Separation of inter-individual differences, intra-individual changes, and time-specific effects in intensive longitudinal data using the NDLC-SEM framework

Augustin Kelava
International Statistical Conference in Memory of Professor Sik-Yum Lee
December 17 - 18, 2019
Outline

Some general thoughts

NDLC-SEM

Examples

Discussion
Some general thoughts

NDLC-SEM

Examples

Discussion
Some general thoughts

Large studies with longitudinal data

- inter-individual differences (e.g., some initial assessment, traits)
- intra-individual changes (e.g., development of competencies, states)
- unobserved heterogeneity in trajectories (e.g., some subgroups)
Some general thoughts

Large studies with longitudinal data

- inter-individual differences (e.g., some initial assessment, traits)
- intra-individual changes (e.g., development of competencies, states)
- unobserved heterogeneity in trajectories (e.g., some subgroups)

Some typical challenges

- poor data quality (e.g., initial assessment takes too much time)
- separation of different functional relationships between variables, data levels, heterogeneity etc.
- time-dependent variables/effects (interventions, specific events)
- lack of statistical procedures (and implementations)
- sparsity of models (many parameters, covariates etc.); regularization procedures
State of the art

Dynamic Latent Class Analysis (DLCA) framework

- Each individual is a member of a **latent class** at each time point with a specific probability (The latent class membership follows a *Hidden Markov Model process*).
- The **individual-specific transition probabilities** are estimated as *(between-level) random effects* which are parameterized by a structural equation model or factor model. **The transition probabilities are not time-dependent!!**
- The **within-level** model is a *dynamic (time-series) model with autoregressive effects* of the latent variables.

State of the art

Dynamic Structural Equation Model (DSEM) framework

- The DSEM framework separates (a) **subject-specific** and (b) **time-specific random effects** (on the between-level).
- There is a **dynamic latent variable model**, which describes, for example, the **intra-individual (within-level) changes** using an autoregressive process of latent variables.
- Each **random within-level parameter** is explained by the subject-specific and time-specific random effects.

Some general thoughts

NDLC-SEM

Examples

Discussion
NDLC-SEM

based on ...

NDLC-SEM – Components

Decomposition of observed variable Y_{it}

$$Y_{it} = Y_{1it} + Y_{2i} + Y_{3t}$$ \hspace{1cm} (1)

Individual-specific component Y_{2i}

$$Y_{2i} = \nu_2 + \Lambda_2 \eta_{2i} + K_2 X_{2i} + \epsilon_{2i}$$ \hspace{1cm} (2)

$$\eta_{2i} = \alpha_2 + B_2 \eta_{2i} + \Omega_2 h_2(\eta_{2i}) + \Gamma_2 X_{2i} + \zeta_{2i}.$$ \hspace{1cm} (3)

Time-specific component Y_{3t}

$$Y_{3t} = \nu_3 + \Lambda_3 \eta_{3t} + K_3 X_{3t} + \epsilon_{3t}$$ \hspace{1cm} (4)

$$\eta_{3t} = \alpha_3 + B_3 \eta_{3t} + \Omega_3 h_3(\eta_{3t}) + \Gamma_3 X_{3t} + \zeta_{3t}.$$ \hspace{1cm} (5)
NDLC-SEM

Within model

\[
[Y_{1|it}|S_{it} = s] = \nu_{1s} + \sum_{l=0}^{L} \Lambda_{ls} \eta_{1|i(t-l)} + \sum_{l=0}^{L} R_{ls} Y_{1|i(t-l)} + \sum_{l=0}^{L} K_{1ls} X_{1|i(t-l)} + \epsilon_{1|it}
\]

\[
[\eta_{1|it}|S_{it} = s] = \alpha_{1s} + \sum_{l=0}^{L} B_{1ls} \eta_{1|i(t-l)} + \sum_{l=0}^{L} \sum_{l'=0}^{L'} \Omega_{1ll'} h_{1ll'}(\eta_{1|i(t-l)}, \eta_{1|i(t-l')})
+ \sum_{l=0}^{L} Q_{ls} Y_{1|i(t-l)} + \sum_{l=0}^{L} \Gamma_{1ls} X_{1|i(t-l)} + \zeta_{1|it}
\]

Categorical variables

\[
[Y_{1jit} = k|S_{it} = s] \Leftrightarrow \tau_{j(k-1)s} \leq [Y_{1jit}^*|S_{it} = s] < \tau_{jks}
\]

with \(\tau_{j0s} = -\infty\) and \(\tau_{j(m_j)s} = \infty\) for all latent states \(s = 1, \ldots, K\).
NDLC-SEM

Within model

\[
[Y_{1it}|S_{it} = s] = \nu_{1s} + \sum_{l=0}^{L} \Lambda_{ls} \eta_{1i(t-l)} + \sum_{l=0}^{L} R_{ls} Y_{1i(t-l)} + \sum_{l=0}^{L} K_{1ls} X_{1i(t-l)} + \epsilon_{1it} \quad (6)
\]

\[
[\eta_{1it}|S_{it} = s] = \alpha_{1s} + \sum_{l=0}^{L} B_{1ls} \eta_{1i(t-l)} + \sum_{l=0}^{L} \sum_{l'=0}^{L'} \Omega_{1ll'} s h_{1ll'}(\eta_{1i(t-l)}, \eta_{1i(t-l')}) + \sum_{l=0}^{L} Q_{ls} Y_{1i(t-l)} + \sum_{l=0}^{L} \Gamma_{1ls} X_{1i(t-l)} + \zeta_{1it} \quad (7)
\]

Categorical variables

\[
[Y_{1jit} = k|S_{it} = s] \Leftrightarrow \tau_{j(k-1)s} \leq [Y_{1jit}^*|S_{it} = s] < \tau_{jks} \quad (8)
\]

with \(\tau_{j0s} = -\infty \) and \(\tau_{j(mj)s} = \infty \) for all latent states \(s = 1, \ldots, K \).

The Markov switching model

The latent state variable \(S_{it} \) follows a Markov switching model with person- and time-specific transition probability:

\[
P(S_{it} = d|S_{i(t-1)} = c) = \frac{\exp(\alpha_{itdc})}{\sum_{k=1}^{K} \exp(\alpha_{itkc})} \quad (9)
\]

\(\alpha_{itdc} \) are person- and time-specific random effects with \(\alpha_{itKc} = 0 \).
NDLC-SEM

Random effects
Any random within-level parameter p_{it} (e.g., elements from ν_1s, Λ_1ls etc.) can be decomposed as

$$p_{it} = p_{2i} + p_{3t} \quad (10)$$

- p_{2i} is a subject-specific random effect which is an element of vector η_{2i} in the between-level model.
- p_{3t} is a time-specific random effect which is an element of vector η_{3t}.

Generalized measurement and structural models

$$[Y_{1it} | S_{it} = s] = \nu_1s + \sum_{l=0}^{L}\Lambda_{1ilts}\eta_{1i(t-l)} + \sum_{l=0}^{L}R_{ilts}Y_{1i(t-l)} + \sum_{l=0}^{L}K_{1ilts}X_{1i(t-l)} + \epsilon_{1it} \quad (11)$$

$$[\eta_{it} | S_{it} = s] = \alpha_{1s} + \sum_{l=0}^{L}B_{1ilts}\eta_{1i(t-l)} + \sum_{l=0}^{L}\sum_{l'=0}^{L'}\Omega_{1ill'rs}h_{1ll'}(\eta_{1i(t-l)}, \eta_{1i(t-l')}) + \sum_{l=0}^{L}Q_{ilts}Y_{1i(t-l)} + \sum_{l=0}^{L}\Gamma_{1ilts}X_{1i(t-l)} + \zeta_{1it} \quad (12)$$
NDLC-SEM – properties

The NDLC-SEM framework is a comprehensive approach which is capable of

a) **intra-individual changes** (as a dynamic structural equation model),

b) **inter-individual differences**, which have an effect on the individual

 trajectories (e.g., within-level random parameters)

c) **time-specific effects** (as random effects),

d) **dynamic latent class memberships**, which capture heterogeneity of the

 trajectories or which can reflect nominal latent variables (such as

 knowledge mastery), and

e) **flexible nonlinear effects** (e.g., splines or interactions) in models, in order

 to account for (multiple) complex relationships between the latent variables.

The Δ^1

- The DLCA framework is capable of a). b) are used to predict d). Again, there

 is no inclusion of time-dependent information in d).

- The DSEM framework is capable of a). b) and c) are used for random effects

 on the within-level.

1Delta is by the way a great album of the British band Mumford & Sons.
Some general thoughts

NDLC-SEM

Examples

Discussion
Example – Achievement and effort
Example – Single-level semiparametric dynamic structural equation model
Example – College drop-out study
Example – Development of Math Skills

Sample
- 7 measurement occasions from kindergarten to grade 8
- random sample of 500 students

Variables
- math skills: 5 out of 9 scales (ordinality/sequence, add/subtract, multiply/divide, place value, rate & measurement)
- time-specific reading skills were used as observed covariates
- fine motor skills were used as covariates (initial measurement occasion)

Hypotheses
- There is **nominal change in the math skill constructs** over time (state S_{it}). Whereas at the beginning two constructs (concrete and abstract math) are necessary, only one construct for math skills will be sufficient at a later time point.
- Students who have a strong increase from one time point to the next in **reading skills**, will also be more likely to master math (switch from state 1 to state 2).
- We assume that increasing **reading skills can compensate low fine motor skills**, which implies a nonlinear interaction effect between these variables.
Example – Development of Math Skills
Example – Development of Math Skills
Some general thoughts

NDLC-SEM

Examples

Discussion
Discussion

Longitudinal studies

- Integration and separation of
 - a) intra-individual changes,
 - b) inter-individual differences,
 - c) time-specific effects,
 - d) unobserved heterogeneity, and
 - e) flexible relationships

is **important** to both modern psychometric modeling of longitudinal data **AND** to comprehensive substantial theories (e.g., college student drop out theories).

- Large (longitudinal) studies include many scales and covariates/variables.

- However, the complexity of typical models is increasing dramatically.
So what?

Usefulness

- **Separation of different types of concepts/measures** (e.g., traits, states)
- **Simultaneous inclusion of both time-specific information AND inter-individual differences** when explaining (unobserved or observed) heterogeneity in trajectories (e.g., unobserved (!) decision to quit college might depend on both vulnerability factors and specific life events)
- **Structural changes** of concepts or behavior (e.g., changes of dimensionality of measures)
- **Interactions and flexible semiparametric effects** are available on all data levels.
Some general problems

Bayesian estimation

- **Regularization techniques** are important fields of future methods development, especially for complex longitudinal models.
- **Suitable variable and parameter selection techniques** are strongly required (not just shrinkage; but selection!).
- **Need for simulation studies** (e.g., sample size requirements, prior distributions)
Some general problems

Bayesian estimation

- Regularization techniques are important fields of future methods development, especially for complex longitudinal models.
- Suitable variable and parameter selection techniques are strongly required (not just shrinkage; but selection!).
- Need for simulation studies (e.g., sample size requirements, prior distributions)

Frequentist estimation

- Features like multilevel data, mixtures, and nonlinearity challenge optimization procedures (e.g., dimensionality of integrals) and theoretical method developments (e.g., correct likelihoods, quadratures).
- For example, expectation maximization (EM) algorithm extensions are needed.
- What is the role of factor scores or 2-step procedures?

Transfer to continuous time dynamic models
Thanks!

Eberhard Karls Universität Tübingen
Wirtschafts- und Sozialwissenschaftliche Fakultät
Methodenzentrum
Hölderlinstr. 29
72074 Tübingen
Germany

Augustin Kelava, Prof. Dr.
augustin.kelava@uni-tuebingen.de
Model setup and priors for the empirical example

Distribution of variables
All observed \((math_{1jit})\) and latent variables \(\eta\) were assumed to follow a normal distribution with the respective mean structure and variance:

\[
[math_{1jit}|S_{it} = s] \sim N(\mu_{1jits}, \sigma^2_{\epsilon_{1j}}) \tag{13}
\]

\[
[\eta_{1it}|S_{it} = 1] \sim MVN(\mu_{\eta,1t1}, \Phi_{\zeta_{11}}) \tag{14}
\]

\[
[\eta_{1it}|S_{it} = 2] \sim N(\mu_{\eta,1t2}, \sigma^2_{\zeta_{12}}) \tag{15}
\]

where \(N(\mu, \sigma^2)\) was the normal distribution with mean \(\mu\) and variance \(\sigma^2\).

For the development of each factor of math skills \(\eta_{1kit}\), we assume an ARIMA(1,1,0) model:

\[
[\eta_{1ki1}|S_{i1} = s] = \alpha_{1ks} + \zeta_{1ki1}
\]

\[
[\eta_{1ki2}|S_{i2} = s] = \alpha_{1ks} + \eta_{1ki1} + \zeta_{1ki2}
\]

\[
[\eta_{1kit}|S_{it} = s] = \alpha_{1ks} + \eta_{1ki(t-1)} + \omega_{ks} \left(\frac{\eta_{1ki(t-1)} - \eta_{1ki(t-2)}}{\Delta\eta_{1ki(t-1)s}} \right) + \zeta_{1kit} \text{ for } t > 2 \tag{16}
\]

with \(\Psi_{1kts} = \Psi_{1ks}\) for all \(t\). Measurement models were assumed to be time invariant.
Markov Switching Model

The probabilities for state membership were modeled using a time- and person-specific latent variable \(\alpha_{itcd} \) for \(t > 1 \) (all persons were assumed to be in state \(S_{i1} = 1 \) at \(t = 1 \)).

\[
P(S_{it} = 1|S_{i(t-1)} = 1) = \frac{\exp(\alpha_{it11})}{\sum_{k=1}^{2} \exp(\alpha_{itk1})} \tag{17}
\]

\[
P(S_{it} = 2|S_{i(t-1)} = 1) = 1 - P(S_{it} = 1|S_{i(t-1)} = 1) \tag{18}
\]

\[
P(S_{it} = 1|S_{i(t-1)} = 2) = 0.01 \tag{19}
\]

\[
P(S_{it} = 2|S_{i(t-1)} = 2) = 1 - P(S_{it} = 1|S_{i(t-1)} = 2) \tag{20}
\]

where we chose a very small probability for those students that mastered math to switch back to a non-mastery state of \(\pi = 0.01 \). The latent variable \(\alpha_{it11} \) was specified as:

\[
\alpha_{it11} = \alpha_{11} + \beta_{11} \cdot read_{i,t-1} + \omega_{13} \cdot (read_{it} - read_{i(t-1)}) + \beta_{21} \cdot motor_{i} \\
+ \omega_{21} \cdot motor_{i} \cdot read_{i(t-1)} + \omega_{22} \cdot motor_{i} \cdot (read_{it} - read_{i(t-1)}) \tag{21}
\]
Prior distributions

Priors were chosen as weakly informative priors throughout the model. For the measurement model on the within level, factor loading and intercept priors were specified as

\[
\lambda_{1j} \sim N(1, 1), \text{ for } j = 1 \ldots 5 \quad (22)
\]
\[
\tau_{1j} \sim N(0, 2), \text{ for } j = 1 \ldots 4. \quad (23)
\]

For the structural models coefficients on the within and between levels, again weakly informative priors were chosen:

\[
\beta_{11} \sim N(0, 1) \quad (24)
\]
\[
\beta_{21} \sim N(0, 2) \quad (25)
\]
\[
\omega_{13} \sim N(0, 1) \quad (26)
\]
\[
\omega_{2p} \sim N(0, 2) \text{ for } p = 1, 2 \quad (27)
\]
\[
\alpha_{11} \sim N(0, 2) \quad (28)
\]

where the constraint \(\alpha_{11} = 0 \) was necessary for model identification. Note that this constraint always holds in this model if data are rescaled by \(Y_{1jit}^c = Y_{1jit} - \bar{Y}_{111} \) because \(Y_{11i1} = \eta_{1i1} \) and all persons are in state \(S_{i1} = 1 \) at the first measurement occasion.
Standard priors were chosen for the **precisions** as

\[
\sigma^{-2}_{\epsilon_{1j}} \sim \text{Gamma}(9, 4), \text{ for } j = 1 \ldots 5 \tag{29}
\]

\[
\Phi_{\zeta_{11}}^{-1} \sim \text{Wishart}(\Phi^{-1}_0, 4) \tag{30}
\]

\[
\sigma^{-2}_{\zeta_{12}} \sim \text{Gamma}(9, 4) \tag{31}
\]

where \(\Phi_0 \) was a \(2 \times 2 \) identity matrix.