Vector and Lines

- Two vectors \mathbf{v} and \mathbf{w} are equal if they have the same length and the same direction.

- **Theorem**
Vector addition and scalar multiplication exhibit the following properties.

1. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for all vectors \mathbf{u} and \mathbf{v}.
2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$ for all vectors \mathbf{u}, \mathbf{v} and \mathbf{w}.
3. $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all vectors \mathbf{u}.
4. $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ for all vectors \mathbf{u}.
5. $1\mathbf{u} = \mathbf{u}$ for all vectors \mathbf{u}.
6. $a(b\mathbf{u}) = (ab)\mathbf{u}$ for all vectors \mathbf{u} and scalars a, b.
7. $(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$ for all vectors \mathbf{u} and scalars a, b.
8. $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$ for all vectors \mathbf{u}, \mathbf{v} and scalars a.

- A vector is called a unit vector if its magnitude is 1.

- **Theorem**
Two nonzero vectors \mathbf{v} and \mathbf{w} are parallel if and only if one is a scalar multiple of the other.

Example 1
Consider a quadrilateral with vertices A, B, C and D in order. If the diagonals AC and BD bisect each other, show that the quadrilateral is a parallelogram.
Example 2
Let OAB be a right-angled triangle with the right angle at O. If C is the foot of the perpendicular from O to the hypotenuse, show that

\[\overrightarrow{AC} = \frac{\|\overrightarrow{OA}\|^2}{\|\overrightarrow{AB}\|^2} \overrightarrow{AB} \]

Lines in Space
- Given a straight line, any nonzero vector that is parallel to the line is called a direction vector for the line.

Vector Equation of a Line
The line parallel to \(\mathbf{d} \neq \mathbf{0} \) through the point with position vector \(\mathbf{p}_0 \) is given by

\[\mathbf{p} = \mathbf{p}_0 + t\mathbf{d} \quad \text{for some scalar } t \]

In other words, the point with position vector \(\mathbf{p} \) is on this line if and only if a real number \(t \) exists such that \(\mathbf{p} = \mathbf{p}_0 + t\mathbf{d} \).

Parametric Equations of a Line
The line through \(P_0(x_0, y_0, z_0) \) with direction vector \(\mathbf{d} = (a, b, c) \neq \mathbf{0} \) is given by

\[x = x_0 + ta \]
\[y = y_0 + tb \]
\[z = z_0 + tc \]

where \(t \) is any scalar.

In other words, the point \(P(x_0, y_0, z_0) \) is on this line if and only if a real number \(t \) exists such that \(x = x_0 + ta \), \(y = y_0 + tb \) and \(z = z_0 + tc \).
Example 3
Find the vector and parametric equations of the following line: The line passing through $P(1,0,−3)$ and parallel to the line with parametric equations $x = −1 + 2t$, $y = 2 − t$ and $z = 3 + 3t$.

The Dot Product
- **Theorem**
 Let $\mathbf{v}_1 = (x_1, y_1, z_1)$ and $\mathbf{v}_2 = (x_2, y_2, z_2)$ be two vectors given in component form. Then their dot product can be computed as follows:

 $$\mathbf{v}_1 \cdot \mathbf{v}_2 = x_1x_2 + y_1y_2 + z_1z_2$$

- $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| ||\mathbf{v}||}$

- **Theorem**
 Two nonzero vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $\mathbf{u} \cdot \mathbf{v} = 0$.

Example 4
Let A and B be the end points of a diameter of a circle. If C is any point on the circle, show that AC and BC are perpendicular.
Projections
- Theorem
Let \(u \) and \(d \neq 0 \) be vectors.

1. The projection \(u_1 \) of \(u \) on \(d \) is given by
 \[
 \text{proj}_d u = \frac{u \cdot d}{\|d\|^2} d.
 \]

2. The vector \(u - \text{proj}_d u \) is orthogonal to \(d \).

Example 5
Write \(u = u_1 + u_2 \), where \(u_1 \) is parallel to \(v \) and \(u_2 \) is orthogonal to \(v \).

\[
\begin{align*}
u &= (2, -1, 1), \quad v = (1, -1, 3)
\end{align*}
\]