4.1.3. Build up a Self-financing Strategy
to achieve return $(X_T - K)^+$ at time $t = T$.

In this subsection we try to derive a Self-financing
strategy to achieve $(X_T - K)^+$ at time $t = T$.

Suppose (a_t, b_t) is such a strategy with
value process

$$V_t = a_t X_t + b_t \beta_t \triangleq u(T-t, X_t), t \in [0, T]$$

for some smooth deterministic function $u(t, x)$.

(Later on we shall know that such function u do
exist.). The exact form of $u(t, x)$ is arbitrary
but it has to satisfy

$$V_T = u(0, X_T) = (X_T - K)^+.$$

This is also called **hedging against the contingent claim** $(X_T - K)^+$.

We intend to use Itô's lemma to derive the
exact form of u and a_t, b_t.

Lecture 17. page 1.
Write \(f(t, x) = u(T-t, x) \), then

\[
\begin{align*}
\hat{f}_1(t, x) &= -u_1(T-t, x), & \hat{f}_2(t, x) &= u_2(T-t, x), \\
\hat{f}_{22}(t, x) &= u_{22}(T-t, x)
\end{align*}
\]

Also recall that \(X \) is a Itô process with

\[
X_t = X_0 + c \int_0^t X_s \, ds + \sigma \int_0^t X_s \, dB_s.
\]

Now apply Itô lemma we have

\[
V_t - V_0 = \hat{f}(t, X_t) - \hat{f}(0, X_0)
\]

\[
= \int_0^t \left[\hat{f}_1(s, X_s) + \frac{\sigma^2}{2} X_s \hat{f}_{22}(s, X_s) \right] \, ds
\]

\[
+ \int_0^t \hat{f}_2(s, X_s) \, dX_s
\]

\[
= \int_0^t \left[-u_1(T-s, X_s) + c X_s u_2(T-s, X_s) + \frac{\sigma^2}{2} X_s u_{22}(T-s, X_s) \right] \, ds
\]

\[
+ \int_0^t \sigma X_s u_2(T-s, X_s) \, dB_s
\]

\[
\vdots \quad \text{(1)}
\]
V_t - V_0 = \int_0^t a_s dX_s + \int_0^t b_s dB_s

Since \beta_t = \beta_0 e^{rt}, \quad dB_t = r\beta_0 e^{rt} dt = r\beta_t dt

Moreover, \quad V_t = a_t X_t + b_t \beta_t, \quad thus

b_t = \frac{V_t - a_t X_t}{\beta_t}

Combining above, we obtain

V_t - V_0 = \int_0^t a_s dX_s + \int_0^t \frac{V_s - a_s X_s}{\beta_s} r\beta_s dB_s

= \int_0^t a_s dX_s + \int_0^t r(V_s - a_s X_s) ds

= \int_0^t ca_s X_s ds + \int_0^t \sigma a_s X_s dB_s + \int_0^t r(V_s - a_s X_s) ds

= \int_0^t [(ca_s - \sigma a_s) X_s + rV_s] ds + \int_0^t \sigma a_s X_s dB_s \quad \ldots (..)

Compare (x) with (y), we obtain

a_t = u_2(T-t, X_t)

(c-r)a_t X_t + ru(T-t, X_t) = (c-r) u_2(T-t, X_t) X_t + ru(T-t, X_t)

= -u_1(T-t, X_t) + cX_t u_2(T-t, X_t) + a5\sigma^2 X_t^2
The above equation can be written as

\[u_1(t,x) = 0.5 \sigma^2 x^2 u_{22}(t,x) + r x u_2(t,x) - r u(t,x) \quad \text{if} \quad x > 0, \ t \in [0, T] \]

Recalling the terminal condition, we have

\[V_T = u(0, x_T) = (x_T - K)^+ \]

which reduces to the restriction on \(u(0,x) \) as

\[u(0,x) = (x - K)^+, \quad x > 0. \quad \ldots \quad (*) \]

§ 4.1.4 The Black and Scholes Formula

The partial differential equation (*) has nice explicit solution:

\[u(t,x) = x \Phi(g(t,x)) - K e^{-rt} \Phi(hlt,x)) \]

where

\[g(t,x) = \frac{\ln(x/K) + (r + 0.5 \sigma^2) t}{\sigma t^{1/2}} \]

\[h(t,x) = \frac{g(t,x) - \sigma t^{1/2}}{\sigma t^{1/2}} \]

and

\[\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy, \quad x \in \mathbb{R}. \]

Exercise: Verify that \(u(t,x) \) given above is a solution to (*) with initial condition (*).
What did we actually do?

\[V_0 = u(T, X_0) = X_0 \Phi(q(T, X_0)) - Ke^{-rT} \Phi(L(T, X_0)) \]

is a rational price at time \(t=0 \) for a European call option with exercise price \(K \).

The stochastic process \(V_t = u(T-t, X_t) \) is the value of your self-financing portfolio at time \(t \in [0, T] \).

The self-financing strategy \((a_t, b_t)\) is given by

\[
\begin{align*}
a_t &= u_2(T - t, X_t) \quad \text{and} \quad b_t = \frac{u(T - t, X_t) - a_t X_t}{\beta_t},
\end{align*}
\]

(4.14)

see (4.10) and (4.8).

At time of maturity \(T \), the formula (4.13) yields the net portfolio value of \((X_T - K)^+\). Moreover, one can show that \(a_t > 0 \) for all \(t \in [0, T] \), but \(b_t < 0 \) is not excluded. Thus short sales of stock do not occur, but borrowing money at the bond’s constant interest rate \(r > 0 \) may become necessary.

Equation (4.13) is the celebrated Black-Scholes option pricing formula. We see that it is independent of the mean rate of return \(c \) for the price \(X_t \), but it depends on the volatility \(\sigma \).
Why is $u(T, X_0)$ a rational price?

If we want to understand $q = u(T, X_0)$ as a rational value in terms of arbitrage, suppose that the initial option price $p \neq q$. If $p > q$, apply the following strategy: at time $t = 0$

- sell the option to someone else at the price p, and
- invest q in stock and bond according to the self-financing strategy (4.14).

Thus you gain an initial net profit of $p - q > 0$. At time of maturity T, the portfolio has value $a_T X_T + b_T \beta_T = (X_T - K)^+$, and you have the obligation to pay the value $(X_T - K)^+$ to the purchaser of the option. This means: if $X_T > K$, you must buy the stock for X_T, and sell it to the option holder at the exercise price K, for a net loss of $X_T - K$. If $X_T \leq K$, you do not have to pay anything, since the option will not be exercised. Thus the total terminal profit is zero, and the net profit is $p - q$.

The scale of this game can be increased arbitrarily, by selling n options for np at time zero and by investing nq in stock and bond according to the self-financing strategy $(n a_t, n b_t)$. The net profit will be $n (p - q)$. Thus the opportunity for arbitrarily large profits exists without an accompanying risk of loss. This means arbitrage. Similar arguments apply if $q > p$; now the purchaser of the option will make arbitrarily big net profits without accompanying risks.

In 1997, Merton & Scholes were awarded the Nobel prize for economics for the work we showed in this chapter.
§ 4.2 A Useful Technique: Change of Measure

Change of Measure, A Example

A random variable \(X \) with density function \(q \) is usually defined for a given probability space \((\Omega, \mathcal{F}, \mathbb{P})\).

Under measure \(\mathbb{P} \),

\[
\mathbb{P}\{X \in (a,b]\} = \int_a^b q(x) \, dx
\]

However, if we change the measure \(\mathbb{P} \) to \(Q \) where

\[
Q(A) = \int_A f(w) \, d\mathbb{P}(w),
\]

Then under \(Q \), the random variable may not have \(Q \) as its density. In fact, we have

\[
Q\{X \in (a,b]\} = \int_a^b f_i(x) q_i(x) \, dx
\]

\(f_i(x) q_i(x) \) may or may not be a density function.
Let P and Q be two probability measures on the σ-field \mathcal{F}. If there exists a non-negative function f_1 such that

$$Q(A) = \int_A f_1(\omega) \, dP(\omega), \quad A \in \mathcal{F},$$

we say that f_1 is the density of Q with respect to P and we also say that Q is absolutely continuous with respect to P.

The integrals in (4.17) have to be interpreted in the measure-theoretic sense.

In a similar way, changing the roles of P and Q, we can introduce the density f_2 of P with respect to Q, given such a non-negative function exists.

If P is absolutely continuous with respect to Q, and Q is absolutely continuous with respect to P, we say that P and Q are equivalent probability measures.

Let (Ω, \mathcal{F}, P) be a probability space.

Let $B = (B_t, t \in [0, T])$ be a standard Brownian motion defined on it.

We are interested in the process of the form

$$\tilde{B}_t = B_t + \theta_t, \quad t \in [0, T]$$

for some constant θ. With the only exception when $\theta = 0$, \tilde{B} is not standard Brownian motion. However, if we change the underlying probability measure P for an appropriate probability measure Q, \tilde{B} can be a standard Brownian motion.
Let
\[\mathcal{F}_t = \sigma(B_s, s \leq t), \quad t \in [0, T], \]
(4.19)
is the Brownian filtration.

Girsanov’s Theorem:
The following statements hold:

- The stochastic process
 \[M_t = \exp \left\{ -qB_t - \frac{1}{2} q^2 t \right\}, \quad t \in [0, T], \]
 (4.20)
is a martingale with respect to the natural Brownian filtration (4.19) under the probability measure \(P \).

- The relation
 \[Q(A) = \int_A M_T(\omega) \, dP(\omega), \quad A \in \mathcal{F}, \]
 (4.21)
defines a probability measure \(Q \) on \(\mathcal{F} \) which is equivalent to \(P \).

- Under the probability measure \(Q \), the process \(\tilde{B} \) defined by (4.18) is a standard Brownian motion.

- The process \(\tilde{B} \) is adapted to the filtration (4.19).

The probability measure \(Q \) is called an *equivalent martingale measure*.

The change of measure serves the purpose of eliminating the drift term in a stochastic differential equation.
Example 4.2.1 (Elimination of the drift in a linear stochastic differential equation)

Consider the linear stochastic diff. equation

\[dX_t = aX_t \, dt + \sigma X_t \, dB_t \quad \cdots (\ast) \]

Introduce \(\widehat{B}_t = B_t + (\mu \sigma) t, \quad t \in [0, T] \)

Then (\ast) becomes

\[dX_t = \sigma X_t \, d\widehat{B}_t \quad \cdots (\ast\ast) \]

Under measure \(Q, \) (with \(M_t(\omega) = \exp \left\{ -\frac{8B_t - \frac{1}{2} \sigma^2 t}{2} \right\} \))

\(\widehat{B}_t \) is a Brownian motion \(\mu = (\mu \sigma) \)

Therefore, we can solve (\ast\ast). The solution is

\[X_t = X_0 \exp \left\{ -\frac{1}{2} \sigma^2 t + \sigma \widehat{B}_t \right\} \quad \text{(simpler !!!)} \]

Going back to \(B_t, \) we have

\[X_t = X_0 \exp \left\{ (c - 0.5 \sigma^2) t + \sigma B_t \right\} \]

as a solution to (\ast).