[Example: Option Pricing in FX Market]

Suppose that in the US dollar markets the current Sterling exchange rate is 1.5. Consider a European call option that offers the holder the right to buy 100 pounds for 150 US dollars at time T. The riskless borrowing borrowing rate in the UK is \(u \) and that in the US is \(r \). Assuming a single period binary model in which the exchange rate at the expiry time is either 1.65 or 1.45, find the fair price of this option.

\[
\begin{align*}
\text{risk neutral prob.:} \\
\text{In the US market} & \quad \mathbb{E}[1.5 e^{1.5 t} \, \text{P}] \\
& \quad \mathbb{E}[1.5 e^{1.5 t} \, (1 - \text{P})] \\
1.5 = e^{-rT} \left[1.5 e^{uT} \text{P} + 1.5 e^{uT} (1 - \text{P}) \right] \\
\Rightarrow \text{P} = 8.25 - 7.5 e^{(r-u)T} \\
\text{In the UK market} & \quad \mathbb{E}[1.5 e^{uT} \, \text{P}] \\
& \quad \mathbb{E}[1.5 e^{uT} \, (1 - \text{P})] \\
1 = e^{-rT} \left[1.5 e^{uT} \text{P} + 1.5 e^{uT} (1 - \text{P}) \right]
\end{align*}
\]

[Conclusion]

\[
\begin{align*}
\Rightarrow \text{P} &= 7.975 e^{(u-r)T} - 7.25 \\
\text{option price:} \\
\text{In the US market} & \quad V_0 = \left[15(1 - \text{P}) \right] e^{-rT} \\
& \quad = 112.5 e^{-uT} - 108.75 e^{-rT} \\
& \quad \text{(in dollars)} \\
\text{In the UK market} & \quad \text{V}_0 = \left[\frac{15}{1.65} (1 - \text{P}) \right] e^{-uT} \times 1.5 \\
& \quad = 112.5 e^{-uT} - 108.75 e^{-rT} \\
& \quad \text{(in dollars)} \\
V_0 &= \text{V}_0
\end{align*}
\]

1. The risk-neutral probabilities calculated by a dollar trader and a Sterling trader are different.
2. The dollar cost at time zero of the option valued by either a dollar trader or a Sterling trader is the same.
[Exercise 1.13]

Suppose that S_1, S_2 have payoffs $(10, -10, 3)$ and $(9, -9, 2)$ in 3 possible scenarios at T.

- If $S^0 = (1,1)'$. Is there any arbitrage opportunity?
- If $S^0 = (1,0.8)'$. Is there any arbitrage opportunity?

For any asset A with initial value $A^0 > 0$ and payoff (A^1, \ldots, A^m), one way to quantify risk is by the criterion

$$ Risk = \max_{j=1, \ldots, m} \left| \frac{A^j}{A^0} \right|. $$

- Find the Risk for the portfolio $V_a = S_1$.
- Find the Risk for the portfolio $V_b = S_1 - S_2$.
- Can you construct a portfolio using S_1 and S_2 with minimum Risk?

\begin{align*}
(1) \quad S &= \begin{pmatrix} 10 \\ -10 \\ 0 \end{pmatrix} \\
S'q &= S_0 \Rightarrow \text{The state price vector does not exist} \Rightarrow \text{arbitrage}
\end{align*}

\begin{align*}
(2) \quad S'q &= S_0 \Rightarrow q = \left(\frac{1}{5}, \frac{1}{10}, \frac{1}{3} \right)'
\Rightarrow \text{arbitrage-free}.
\end{align*}

\begin{align*}
(3) \quad (A^1, A^2, A^3) &= (10, -10, 3) \\
A^0 &= 1
\Rightarrow Risk = \max \left(\left| \frac{10W_1 + 9W_2}{W_1 + 0.8W_2} \right|, \left| \frac{3W_1 + 3W_2}{W_1 + 0.8W_2} \right| \right)
\end{align*}

\begin{align*}
(4) \quad (A^1, A^2, A^3) &= (1, -1, 1) \\
A^0 &= 0.2 \\
\Rightarrow Risk &= \max \left(\left| \frac{10W_1 + 9W_2}{W_1 + 0.8W_2} \right|, \left| \frac{3W_1 + 3W_2}{W_1 + 0.8W_2} \right| \right)
\end{align*}

\begin{align*}
(5) \quad \text{Suppose the minimum Risk portfolio has a weight } \hat{w} = (W_1, W_2)'
\end{align*}

Since $V_0 = W_1 + 0.8W_2 > 0$, without loss of generality, we assume $W_1 + 0.8W_2 = 1$.