[Definition] (Independence)

(1) Two events $A, B \in \mathcal{F}$ are statistically independent if

$$P(A \cap B) = P(A)P(B).$$

(2) Two sigma fields \mathcal{F}_1 and \mathcal{F}_2 are independent if for any two events $A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2$, A_1, A_2 are independent.

(3) Two random variables X_1 and X_2 are independent if

$$P(X_1 \in B_1, X_2 \in B_2) = P(X_1 \in B_1)P(X_2 \in B_2),$$

for any $B_1, B_2 \in \mathcal{B}$.

[Exercise 3.12]

How to define the independence between an event and a random variable? How to define the independence between an event and a σ-field? How to define the independence between a random variable and a σ-field?
[Exercise 3.13]

Show that two random variables X and Y are independent if and only if the σ-fields $\sigma(X)$ and $\sigma(Y)$ are independent.

[Exercise 3.14]

Let $X \sim N(0, 1)$ and $Y = X^2$. Show that X and Y are uncorrelated but dependent.