[Definition] (Sample space)
The sample space \(\Omega \) is the collection of all possible outcomes of a particular experiment. An element in the sample space is called a sample point and is denoted by \(\omega \). A subset of the sample space is called an event.

[Definition] (\(\sigma \)-field)
A collection of events of \(\Omega \) is called a \(\sigma \)-field, denoted by \(\mathcal{F} \), if it satisfies the following three properties:

(1) \(\emptyset \in \mathcal{F} \);

(2) If \(A \in \mathcal{F} \), then \(A^c \in \mathcal{F} \);

(3) If \(A_1, A_2, \ldots \in \mathcal{F} \), then \(\bigcup_{i=1}^{\infty} A_i \in \mathcal{F} \).
[Exercise 2.9]

Explain whether the followings are σ-fields or not:

(1) Suppose $\Omega = \{1, 2, 3, 4, 5, 6\}$ and $\mathcal{F} = \{\{1, 2\}, \{3, 4, 5\}, \{6\}\}$.

(2) Suppose Ω and \mathcal{F} are defined as in part (1). Let $\mathcal{F}^* = \{A : A$ is the union of some subsets in $\mathcal{F}\}$. Is \mathcal{F}^* a σ-field?
[Definition] (σ-field generated by a set)

Let \mathcal{A} be a collection of subsets of Ω, $\sigma(\mathcal{A})$ is the smallest σ-field containing \mathcal{A}.

[Exercise 2.13]

Show that the σ-field generated by a class of sets \mathcal{A} can be expressed as

$$\sigma(\mathcal{A}) = \cap_{\alpha} \mathcal{F}_\alpha,$$

where \mathcal{F}_α are all the σ-fields (possibly uncountable) that contain \mathcal{A}.

[Definition] (Borel σ-field)

Let C be the collection of all finite open intervals on \mathbb{R}, then

$$B = B_{\mathbb{R}} = \sigma(C)$$

is called the Borel σ-field, whose element is called Borel set. Particularly, the Borel σ-field on $[a,b]$ is denoted by

$$B_{[a,b]} = \{ [a,b] \cap B : B \in B \}.$$

[Exercise 2.16]

Show that $B_{[a,b]}$ is a σ-field for any $-\infty < a < b < \infty$.
[Exercise 2.8]

Let $-\infty < a < b < \infty$. Show that the following sets belong to the Borel σ-field:

1. Singleton: $\{x\}$, where $x \in \mathbb{R}$.

2. Half closed interval: $[a, b)$ or $(a, b]$.

3. Closed interval: $[a, b]$.

4. $(-\infty, b)$ and (a, ∞).
[Exercise 2.15]

Show that any continuous function \(f : \mathbb{R} \to \mathbb{R} \) is a Borel Measurable.