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SUMMARY

We propose a two-stage algorithm for computing maximum likelihood estimates

for a class of spatial models. The algorithm combines the features of Markov

chain Monte Carlo methods such as the Metropolis-Hastings-Green algorithm

and the Gibbs sampler, and stochastic approximation methods such as the off-

line average (Polyak and Juditsky, 1992) and adaptive search direction (Gu and

Kong, 1998). A new criterion is also build into the algorithm so stopping is

automatic once the desired precision is set. Simulation studies and applications

to some real data sets have been conducted with three speciÞc spatial models.

We compared the proposed algorithm to a direct application of the classical

Robbins-Monro algorithm using Wiebe�s wheat data (Andrews and Herzberg,

1985) and found that our procedure is at least 15 times faster.

Keywords: Auto-normal model; Ising model; Markov chain Monte Carlo; Off-line average;

Spatial models; Stochastic approximation; Very-Soft-Core model.



1. Introduction

Recently, there has been an increasing interest in modeling spatial data with interac-

tion among points. Those include Strauss-type hard-core models (Strauss, 1975; Kelly

and Ripley, 1976); inhomogeneous spatial Poisson processes (Baddeley and Turner, 1998);

spatial lattice models (Besag, 1974; Strauss, 1977); and some pairwise interaction models

(Besag, 1974; Ripley, 1977; Diggle et al., 1994). Spatial statistical models consist of three

seemingly distinct parts, problems with continuous spatial index, problems with lattice

index, and spatial point patterns. For a general introduction to statistical methodology

for spatial models, see Ripley (1981), Diggle (1983), Stoyan, Kendall and Mecke (1987),

Cressie (1993) and Barndorff-Nielsen, Kendall and van Lieshout (1999).

Due to the intractable likelihood function, maximum likelihood estimation has so far

rarely been used for spatial models. A notable exception was Huffer and Wu (1998), where

the Monte Carlo method of Geyer and Thompson (1992) was used; see also Geyer (1999).

Direct computation of the maximum likelihood estimation by numerical approximation for

some pairwise interaction models was developed by Ogata and Tanemura (1984). Other

Monte Carlo based methods include the Monte Carlo Newton-Raphson approach (Pentti-

nen, 1984) and the stochastic approximation approach (Younes, 1988, 1989; Moyeed and

Baddeley, 1991). Due to the difficulties encountered in directly computing the maximum

likelihood estimation, the maximum pseudo-likelihood estimator for spatial models was

proposed as an alternative to the maximum likelihood estimation (Besag, 1977; Goulard,

Särkkä and Grabarnik, 1996; Baddeley and Turner, 1998). However, the maximum pseudo-

likelihood estimator is inefficient compared with the maximum likelihood estimate (Guyon,

1982; Pickard, 1982; Jensen and Møller, 1991; Comets, 1992; Mase, 1995). More recently,

Huang and Ogata (1999) considered an approximate likelihood approach which is a com-

bination of an initial maximum pseudo-likelihood estimator and a one-step Monte Carlo
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Newton-Raphson method.

In this paper, we consider computing the maximum likelihood estimation of spatial

models via an improved Markov chain Monte Carlo stochastic approximation (MCMC-SA)

algorithm. Younes (1988) Þrst proposed to use the Markov chain Monte Carlo stochastic

approximation for spatial statistical models. Moyeed and Baddeley (1991) have applied

the Robbins and Monro (1951) type algorithms to the Strauss hard-core model for the

maximum likelihood estimation. However, the use of stochastic approximation type of

algorithms for spatial models was hampered by at least four problems: the convergence

of the algorithm is slow unless a �good� starting point is used; one cannot estimate the

information matrix; no practical stopping criterion was available; and there was no central

limit theorem for the convergence of the algorithm. However, stochastic approximation was

recommended as a method to get a starting point for the Monte Carlo likelihood method

(Younes, 1989; Geyer, 1999).

Recent developments in stochastic approximation (Kushner and Yin, 1997) and in using

it to Þnd the maximum likelihood estimates in general missing data problems (Gu and

Kong, 1998; Delyon, Lavielle and Moulines, 1999) shed new light on applying stochastic

approximation algorithms for spatial models. The major idea of Gu and Kong (1998) is

that stochastic approximation can be used to compute the maximum likelihood estimation

and the information matrix simultaneously, and the estimated information matrix at each

iteration can be used in updating the estimated maximum likelihood estimation, hence

the optimal rate of convergence is achieved. In Delyon, Lavielle and Moulines (1999), two

recent breakthroughs in stochastic approximation were introduced: the method of dynamic

bounds (Chen, Guo and Gao, 1988), and the method of off-line average (Polyak, 1990;

Polyak and Juditski, 1992). The dynamic bounds method greatly reduces the conditions

on the growth of the function for convergence. The off-line average method automatically
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gives the optimal rate of convergence without estimating the information matrix.

In this paper, we propose an algorithm which combines the features of Markov chain

Monte Carlo methods and these stochastic approximation type methods. Moreover, in-

spired by the recent developments in constant gain algorithms for time-varying dynamic

systems, we propose a two-stage Markov chain Monte Carlo stochastic approximation al-

gorithm. In Stage I, a sequence of large gain constants is used to get our estimates quickly

into the feasible region. In Stage II, an optimal stochastic approximation procedure is

carried out. A stopping criterion which depends on the desired precision of the estimate

is build into this stage so stopping of the program becomes automatic. Our algorithm has

been successfully applied to three examples. At least for moderate data size, our algo-

rithm bears none of the unpleasant features which mark earlier applications of stochastic

approximation algorithms to these models.

The paper is organized as follows. Section 2 introduces the spatial models and presents

our Markov chain Monte Carlo stochastic approximation algorithm. A new stopping cri-

terion is introduced in Section 3. Three spatial models are considered in Sections 4-6,

some simulation studies and real examples are analyzed to illustrate our methodology. A

comparison with the classical stochastic approximation is given in Section 7. A discussion

is given in Section 8.

2. The spatial models and the MCMC-SA algorithm

2.1. The spatial models

Assume that we have a pattern of points X = {xi ∈ A : i = 1, · · · , n} in a region
A ⊂ Rd, where Rd is a d-dimensional Euclidean space. A spatial model in this paper is a
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statistical model for X with density

f(x|θ) = exp{−Q(x; θ)− logC(θ)}, (1)

where θ is a p−dimensional parameter vector of interests, the potential function Q(·; ·)
exhibits the interaction between components of X, and the normalizing factor is

C(θ) =
Z
An
exp{−Q(y; θ)}µ(dy), (2)

where µ(dy) is either the Dirac�s delta measure δy(dy) or dy, according that y takes discrete

or continuous values, respectively. It is assumed that the admissibility condition C(θ) <∞
holds for a set of parameters in order to deÞne the likelihood. Thus, the log-likelihood of

θ for the observation X = xo is

`(θ;xo) = log f(xo|θ) = −Q(xo; θ)− logC(θ). (3)

For simplicity of notation, we shall omit xo in `(θ;xo) and Q(xo; θ).

Most parametric spatial models can be described by (1). The function C(θ) is also

called the partition function in these models. Since the integration in (2) is usually of very

high dimension, the partition function generally admits no simple form.

2.2 The MCMC-SA algorithm

We wish to Þnd the value �θ ∈ Θ ⊂ Rp that maximizes `(θ), called the maximum

likelihood estimate (MLE). Throughout the paper, we shall assume that the function `(θ)

has unique mode and the MLE always exists and is unique. Due to the intractability of

the partition function, direct maximization of `(θ) is numerically in feasible.

For a smooth `(θ), its Þrst and second derivatives are respectively

5`(θ) = −5Q(θ)−5 logC(θ) and 52 `(θ) = −52 Q(θ)−52 logC(θ), (4)

where 5 and 52 are the Þrst and second derivative operators with respect to θ. Thus, if

we can calculate5`(θ) and52`(θ) at each θ, we can expect to get the maximum likelihood
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estimate by the Newton-Raphson method. From (4), we need to calculate 5 logC(θ) and
52 logC(θ).

Using the identities Eθ[5`(θ;X)] = 0 and Eθ[52`(θ;X)] = −Eθ[5`(θ;X)⊗2], where Eθ

denotes expectation with respect to the density in (1), we can show that

5 logC(θ) = −Eθ[5Q(X, θ)], (5)

52 logC(θ) = −Eθ{52Q(X; θ)}+ Eθ{5Q(X; θ)}⊗2 − {Eθ[5Q(X; θ)]}⊗2,

where for vector a, a⊗2 = aaT . One way to calculate 5 logC(θ) and 52 logC(θ) is to use

numerical integration in (5). However, the numerical approximation is accurate only for

some special cases, which usually gives unstable estimates. Another way is to resort to

Monte Carlo integration. So in principle, we may obtain 5 logC(θ) and 52 logC(θ) by

using the Monte Carlo approximation, if we can simulate {Xθ(t) : t = 1, · · · , T} from model
(1). In the case of spatial models, the generation of the random samples can be carried out

by Markov chain Monte-Carlo methods, e.g. the Gibbs sampler, the Metropolis-Hastings

algorithm, birth-and-death process or the Metropolis-Hasting-Green algorithm; see Besag

and Green (1993), Besag et al. (1995), Geyer (1999), Møller (1999), Robert and Casella

(1999) and the references therein.

It should be noted that we introduce �noise� in approximating5 logC(θ) and52 logC(θ)

at each θ. The question is how close one should approximate these two functions and how

to handle the noise. The stochastic approximation algorithm, Þrst proposed by Robbins

and Monro (1951), provides a method of handling such noise and can be employed to

Þnd the maximum likelihood estimates of some spatial models. Early work in this area

can be traced back to Younes (1988, 1989) and Moyeed and Baddeley (1991). However, as

reported in Moyeed and Baddeley (1991), results from a direct implementation of Robbins-

Monro algorithm to a single parameter Strauss model were not satisfactory. See also Geyer

(1999).
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Using the fact that in most likelihood problems, the information matrix can also be

approximated by simulations, Gu and Kong (1998) proposed a Markov chain Monte Carlo

stochastic approximation algorithm which uses the approximated information matrix in

updating the next estimate. While this algorithm improves upon the performance of the

classical Robbins-Monro algorithm, direct application of this algorithm to the spatial mod-

els is not satisfactory, as we found from simulation studies (not reported in this paper) with

the models described in Sections 4-6. The problem is that the dimension of X is so large

that the convergence of the algorithm is usually very slow, especially if the initial value is

not close to the maximum likelihood estimation.

Another signiÞcant development in stochastic approximation is due to Polyak (1990)

(see also Polyak and Judiski (1992), and Delyon, Lavielle and Moulines (1999)), who

showed that if we run an ordinary Robbins-Monro algorithm with a bigger gain constants

sequence (γk = k
−α, 1/2 < α < 1, while γk = k−1 is considered to be optimal) and offset

the oscillation by off-line averaging, then the optimal rate of convergence is obtained by

the averaged sequence. Again, simulation shows that direct application of this idea to the

spatial models discussed in Sections 4-6 is unsatisfactory. The problem here again is the

slowness of convergence to the maximum likelihood estimation if the initial value is mildly

away. Theoretically, from the proof of Theorem 4 of Delyon, Lavielle and Moulines (1999)

and Chapter 11 of Kushner and Yin (1997), we see that the optimal rate of convergence

only kicks in when the estimate is sufficiently close to the maximum likelihood estimation.

If the initial value is far away from the maximum likelihood estimation, a large gain

constant sequence can be used at Þrst to force the estimates into a small neighborhood

of the maximum likelihood estimation. This idea of using larger gain constants when the

current estimate is still far away from the target can be traced back to Kesten (1957). Our

proposed algorithm is also inspired by the development of constant gain algorithms for
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time varying dynamic systems (Kushner and Yin, 1997; Dußo, 1997). Once the current

estimate is close to the maximum likelihood estimation, then an optimal procedure such

as the off-line average method can be used effectively.

Our algorithm has two stages of stochastic approximation. In Stage I, we use a larger

gain constant sequence and in Stage II, we use the off-line average method of Polyak and

Judiski (1992). In both stages, the estimated search direction method of Gu and Kong

(1998) is employed.

We Þrst introduce two basic steps of the stochastic approximation specialized to our

model and notation. Let us keep in mind that θk is the current estimate of �θ, hk is the

current estimate of Eθ̂[5Q(X; �θ)] and Γk is the current estimate of −Eθ̂{52Q(X; �θ)} +
Eθ̂{5Q(X; �θ)}⊗2. We also assume that, for each θ, there exists a Markov transition prob-

ability density Πθ(·, ·) such that the chain driven by this transition probability is aperiodic
and irreducible with stationary distribution f(x|θ).

Step 1. At the kth iteration, set Xk,0 = Xk−1,m. For i = 1, · · · ,m, generate Xk,i from the

transition probability density Πθk−1(Xk,i−1, ·);

Step 2. Update θk−1 to θk, hk−1 to hk and Γk−1 to Γk by

hk = hk−1 + γk(H(θ
k−1;Xk)− hk−1),

Γk = Γk−1 + γk(I(θ
k−1;Xk)− Γk−1),

θk = θk−1 + γk[52Q(θk−1) + Γk−1 − h⊗2
k−1]

−1[−5Q(θk−1) +H(θk−1;Xk)],

(6)

where Xk = (Xk,1, · · · ,Xk,m);

H(θk−1;Xk) =
1

m

mX
i=1

5Q(Xk,i; θ
k−1),

and

I(θk−1;Xk) = − 1
m

mX
i=1

52Q(Xk,i; θ
k−1) +

1

m

mX
i=1

{5Q(Xk,i; θ
k−1)}⊗2.
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Stage I of the proposed algorithm consists of choosing an initial point θ0, an initial

matrix Γ0, an initial vector h0, an initial spatial conÞguration X0,m and of setting k = 1

followed by iterating Steps 1 - 2 with k = 1, . . . ,K1. The gain constants are deÞned by

γk = γ1k = b1/(k
a1 + b1 − 1), k = 1, . . . , K1,

where K1 ≥ K0 is determined by

K1 = inf

K ≥ K0 :

°°°°°°
KX

k=K−K0+1

Sign(θk − θk−1)/K0

°°°°°° ≤ η1

 , (7)

where Sign(θ) is a vector of 1, 0 or −1 according to whether the component of θ is pos-
itive, zero or negative respectively. Integers b1, K0 and real number a1 ∈ (0, 1/2), η1 are

preassigned.

Stage II starts when Stage I Þnishes and takes the Þnal values of θ, h, Γ and X of Stage

I as its initial values. The algorithm iterates Steps 1 and 2 with k = 1, . . . , K2. The gain

constants are deÞned by

γk = γ2k = b2/(k
a2 + b2 − 1), k = 1, . . . , K2,

where integers b2, and the real number a2 ∈ (1/2, 1) are preassigned, and K2 is deÞned in

Section 3. At the same time, an averaging procedure is used

�θk = �θk−1 + (θk − �θk−1)/k, �hk = �hk−1 + (hk − �hk−1)/k, �Γk = �Γk−1 + (Γk − �Γk−1)/k, (8)

assuming �θ0 = 0. After the K2-th iteration, we use the off-line average (�θ
K2, �hK2 , �ΓK2) as

our Þnal estimate of (�θ,−5 logC(�θ),52 logC(�θ) + [5 logC(�θ)]⊗2). This is equivalent to

averaging of all the values (of Stage II) up to K2.

To ensure that the gain constant in Stage I is large, we usually choose a1 to be close

to zero, b1 to be relatively large, and η1 to be relatively small. For example, we may take

a1 = 0.3, b1 = 10 and η1 = 0.1. With these choices, the proposed algorithm will typically
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move quickly towards the feasible region. In Stage II we use a2 close to 1/2, a small integer

for b2, say, a2 = 0.6, b2 = 1. Coupling with the off-line averaging procedure (8), the

algorithm will stabilize in the neighborhood of the maximum likelihood estimate.

Exitence of Þnite value K1 in Stage I can be argued from the point of view of the

constant gain stochastic approximation algorithm. If γ1k = γ is a small enough constant,

then (hk,Γk, θ
k), k = 1, 2, . . . forms a recurrent Markov chain (Theorem 8.1.5 of Dußo,

1997). In our case, since γ1k → 0, as k →∞, the recurrence is guaranteed.

A set of sufficient conditions to ensure root square convergence for �θk, �hk and �Γk in

Stage II were given in Chapter 10 and 11 of Kushner and Yin (1997). We also refer the

reader to Delyon et. al. (1999). To be more speciÞc, we have, under general conditions

(Theorem 10.8.1 and Theorem 11.1.1 of Kushner and Yin, 1997; or Theorem 4 of Delyon

et. al., 1999), as k →∞,
√
k
³
�θk − �θ

´
→ N

µ
0,
h
−52 `(�θ)

i−1
Σ
h
−52 `(�θ)

i−1
¶
, (9)

where Σ is the covariance matrix in the central limit theorem

1√
k

kX
j=1

n
H(θj−1;Xj) +5 logC(θj−1)

o
→ N (0,Σ), (10)

as k →∞.

The choice of m should not affect the convergence of the proposed procedure. In

general, large m reduces the covariance Σ and the correlation between H(θk−1;Xk) and

H(θk;Xk+1). Therefore, large m reduces the number of iterations required by the Markov

chain Monte Carlo stochastic approximation algorithm to achieve convergence.

3. A Stopping Criterion

A standard stopping criterion used for the stochastic approximation procedure is to

stop when the relative change in the parameter values from successive iterations is small.
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There are many problems with this since there is always a chance that the change in θ is

small but the current estimate is still not close to the maximum likelihood estimate.

An important identity is that 5`(θ) equals to zero at the maximum likelihood estimate
�θ. It is natural to consider a stopping criterion which is based on small values of 5`(�θk).
At iteration k, deÞne ∆k = (5`(�θk))T

h
−52 `(�θ)

i−1
(5`(�θk)). Ignoring high order terms,

simple algebra shows that ∆k is asymptotically equivalent to (�θ
k− �θ)T

h
−52 `(�θ)

i
(�θk− �θ),

which is not effected by the scale since �θ has asymptotic variance
h
−52 `(�θ)

i−1
. We

consider choosing K2, the number of iterations of Stage II, such that ∆K2 be small.

An estimate of 5`(�θk) is �5`(θk) = − 5 Q(�θk) + �hk and an estimate of − 52 `(�θ) is

− �52`(θk−1) = 52Q(�θk−1) + �Γk−1 − �h⊗2
k−1. However, if we just use the natural estimate

�5`(θk)T
h
− �52`(θk−1)

i−1 �5`(θk) of ∆k as our criterion for convergence, then we are ignor-
ing a possibly large Monte Carlo error.

In order to control the Monte Carlo estimation error, we make the following consid-

eration. Expressions (9) and (10) assert that
√
k �5`(θk) is asymptotically distributed as

N (0,Σ). Therefore, the variance of �5`(θk)T
h
− �52`(θk−1)

i−1 �5`(θk) is asymptotically
2 tr

½h
− �52`(θk−1)

i−1
Σ
¾2

/k2, where tr{A} denote the trace of matrix A. See, for example,
Corollary 1.3 of Section 2.5 of Searle (1971).

In practice let �Σ denote an estimate of Σ. Then a convergence criterion can be based

on

�∆k = �5`(θk)T
h
− �52`(θk−1)

i−1 �5`(θk) + tr
½h
− �52`(θk−1)

i−1 �Σ
¾
/k. (11)

Therefore, we deÞne

K2 = inf
n
k : �∆k ≤ η2

o
,

where η2 (usually taken to be around 0.001) is a preassigned small number.

Estimation of Σ can be performed in the following way. If m is large, we may expect
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the correlations between consecutive H(θj−1;Xj)s to be small. So a natural estimate of Σ

can be constructed via the sample covariance of those values. A more precise estimate of Σ

can certainly be used if we treat {H(θj−1;Xj), j = 1, . . . , k} as a realization of a time series
(Geyer, 1999). As we are dealing with the average of m values and this estimate is only

used in the computation of the maximum likelihood estimation, a rough estimate should

be enough to serve our purpose. Moreover, in each iteration, 52Q(θk−1) + Γk−1 − hk−1
⊗2

can be used as a rough estimate of −52 `(�θ), which will save computation time, especially

when the dimension of θ is large.

To illustrate the behavior of the proposed Markov chain Monte Carlo stochastic ap-

proximation algorithm, two simulation studies and analyses of three real data sets in the

literature will be discussed in Sections 4, 5 and 6. All computation were done in the C

language on a SUN hpc4500 workstation. In all the examples, the convergence criterion

in (7) and (11) was used in Stage I and II respectively and (K0, η1, η2) was set to be

(100, 0.1, 0.001).

4. Ising Model

The Ising model is a discrete Markov random Þeld model, placing a binary random

variable x(i, j) at each site (i, j) taking values in {−1,+1} on a regular M0 × N0 lattice

Z2
M0,N0

. Realizations,X = {x(i, j) : (i, j) ∈ Z2
M0,N0

}, of the random Þeld, are conÞgurations
of pluses and minuses on Z2

M0,N0
. The statistic that count the excess of like, over unlike,

nearest-neighbor points on the lattice, is deÞned as V = V (X) =
P
nn x(i, j)x(u, v), where

nn means that the summation is over all the pairs (i, j) and (u, v) such that the two points

are nearest-neighbors. The potential function is Q(X; θ) = −θV (X) and the normalizing
factor is obtained by summing over all possible conÞgurations X, C(θ) =

P
X e

θV (X). In

this model, V (X) is the minimal sufficient statistic for the parameter θ. The sign of θ

11



determines whether the Ising model is ferromagnetic or anti-ferromagnetic (attractive or

repulsive). Let m(X) =
PM0
i=1

PN0
j=1 x(i, j) be magnetic moment of conÞguration X, the

spontaneous magnetization is deÞned by SM(θ) =
P

Xm(X)e
θV (X)/(M0N0C(θ)). When

|θ| is smaller than the critical temperature near 0.44, SM(θ) equals to zero (Brémaud,
1998).

In order to check the usefulness of the proposed algorithm, we consider the following

simulation study for the Ising model. In this simulation study, the Ising model is set on

a 64× 64 square lattice on the plane: {x(l, j) : l, j = 1, · · · , 64}. We assume the periodic
boundary for the square lattice, which considers {x(i, 64), x(i, 1)} and {x(64, j), x(1, j)} as
neighbors to each other. To simulate the process, the Metropolis algorithm with Gibbs

dynamics (Müller, 1991) was used. Let the current value of the process at site (l, j) be x(l, j)

and the current total potential value be V . Take the alternative value x(l, j)∗ = −x(l, j)
at the site (l, j), which leads to the potential value Q∗. Then, the Metropolis procedure at

the present site (l, j) continues as follows:

1) if Q∗ ≤ Q, replace x(l, j) and Q by x(l, j)∗ and Q∗ respectively;

2) if Q∗ > Q, generate a Uniform(0, 1) random variable U and

2.1) if U ≤ exp(Q−Q∗), set x(l, j) = x(l, j)∗ and Q = Q∗;

2.2) otherwise, keep x(l, j) and Q.

For each parameter value θ0 ∈ {0.00,±0.20,±0.40}, 500 data sets were simulated via
the Metropolis algorithm as follows. Each site (l, j) was selected in lexicographical order.

The initial state of the process is taken at random such that x(i, j) is independently ±1
with equal probability. The Metropolis algorithm was repeated at least 320×642 times (320

Monte Carlo steps). Then, SMT (θ) =
PT
t=1m(X

t)/T was used to assess the convergence

of the Metropolis algorithm, where {X1, · · · ,XT}(T ≥ 320) is the the output from the
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Metropolis algorithm. When |SMT (θ)| is smaller than 0.001, we stoped the algorithm and
declared that the equilibrium states was achieved.

Based on the simulated data sets, we applied the Markov chain Monte Carlo stochastic

approximation algorithm described in Section 2 to get the maximum likelihood estimate of

the unknown parameter. The starting value of θ is taken to be 0.0 for all the true parameters

θ0. The two-stage Markov chain Monte Carlo stochastic approximation algorithm with

(a1, b1; a2, b2) = (0.3, 2; 0.8, 2) converged quickly. In each iteration, the same Metropolis

algorithm was used to sample a random variable at each site (l, j); however, each site was

selected at random with 1/(64×64) probability, not according to the lexicographical order.
For example, if site (1,1) were selected, we run the above mentioned Metropolis procedure

at the site (1,1) with other sites unchanged. In other words, only the value at one site is

possibly changed from Xk,i−1 to Xk,i. The number m was set at m = 20, 000. Compared

with the total number of sites 64× 64 = 4096, m = 20, 000 is not too large.

To illustrate the performance of the proposed algorithm, we calculated the bias, the

mean of the standard deviation estimates and the root mean square error obtained from

the 500 estimates. The mean of the number of iterations for each estimate and the average

CPU time for each estimate are also obtained. The results obtained are summarized in

Table 1. It can be seen that the performance of the proposed Markov chain Monte Carlo

stochastic approximation algorithm is almost perfect. All the relative efficiencies ( the

ratio of the mean of the standard deviation estimates and the root mean square error) are

close to 1.0. For comparison, the maximum likelihood estimates obtained via the DALL

optimization subroutine and the maximum pseudo-likelihood estimates obtained based on

100 estimates, presented in Huang and Ogata (1999), are also included in Table 1. The

DALL optimization program (Ishiguro and Akaike, 1989) is an implementation of Davidon�s

variance algorithm with a numerical derivative evaluation procedure. The performance of
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the proposed Markov chain Monte Carlo stochastic approximation algorithm is better since

the efficiency coefficients are uniformly closer to 1 for the proposed algorithm than those

by the DALL optimization subroutine and by the maximum pseudo-likelihood estimate.

For an analysis of real data, we Þtted the Ising model on 125× 12 rectangle lattice to
a transfered Wiebe�s wheat data (Andrews and Herzberg, 1985). The value �1� denotes

�larger than or equal to the mean value� and �-1� stands for �less than the mean value�.

Figure 1 (a) depicts this transferred Wiebe�s wheat data. Inspection of it reveals that there

is a strong degree of spatial correlation in the data; that is, whether the wheat yield at a

given site is larger or less than the mean value is strongly related to the wheat yields at

neighboring sites. We also assume the periodic boundary condition for the data. The two

stage Markov chain Monte Carlo stochastic approximation algorithm with (a1, b1; a2, b2) =

(0.3, 2; 0.8, 2) and m is 5000 was used to obtain the maximum likelihood estimate �θ = 0.372

and the standard deviation estimate 0.012. The large value of �θ is consistent with the

observation in Figure 1 (a). The algorithm was stopped at the 833-th iteration after

6 seconds. The same Metropolis algorithm as in the simulation is used. The likelihood

function calculated via the Ogata-Tanemura method and the Onsager formula are presented

in Figure 1 (b). The starting value of unknown parameter θ is set at −0.3, which is far
from the �θ. Figure 1 (c) and (d) show the convergence behavior of θk, �θk and �∆k at each

iteration. Our algorithm shows the robustness to the initial value of unknown parameter

θ and can Þnd the true maximum likelihood estimate with high precision.

5. Auto-normal Model

Consider a Gaussian Markov random Þeld X = {x(i, j)} on a lattice Z2
M0,N0

, whose

conditional probability at a site (i, j) in Z2
M0,N0

given the value x(u, v) at the rest of sites

14



is given by

f(x(i, j)|x(u, v); (u, v) 6= (i, j)) = (12)

(2πσ2)−1/2 exp

−[x(i, j)− µi,j − X
(u,v) 6=(i,j)

βi,j;u,v(x(u, v)− µu,v)]2/2σ2

 ,
where σ, µi,j and the βi,j;u,v�s are parameters, and the sum is taken for the neighboring sites

(u, v) of (i, j). The joint probability density of the process X (Besag, 1974) can be written

as

f(X|µ, σ2, B) = (2πσ2)−M0N0/2|B|1/2 exp
n
−(X− µ)TB(X− µ)/2σ2

o
(13)

where B = (−βi,j;u,v) with −βi,j;i,j = 1 for i = 1, . . . ,M0 and j = 1, . . . , N0. The maximum

likelihood estimate for a general Markov random Þeld model of form (12) is not easy

to calculate due to the difficulty of evaluating the normalizing constant, since B is a

M0N0 ×M0N0 dimensional matrix (e.g., a 2048 × 2048 matrix corresponding to a small
model on a 64×64 square lattice). If we assume a modulo boundary for the lattice process
(as in the previous section), then |B| admits a simpler form (Besag and Moran, 1975).

We conducted a simulation study of our proposed algorithm with the auto-normal

model. The Gaussian Markov process is set on a 64 × 64 square lattice on the plane:
{x(i, j) : i, j = 1, · · · , 64}. To avoid edge effects, the periodic boundary for the square
lattice is assumed. It is assumed that µ = 0 and βi,j;u,v = β for the nearest neighbor sites

of (i, j); and βi,j;u,v = 0 for the other (u, v). In our simulations, β is set to be 0.05, 0.11,

0.159 and 0.233, only processes with β < 0.25 exist (Moran, 1973). The true value of

σ = exp(σ∗) is set to 1.0; that is, σ∗ = 0.0. Thus, there are two parameters β and σ∗ to

be estimated.

The Gibbs algorithm as described in Huang and Ogata (1999) was used. Another

approach to sample from Gaussian Markov random Þeld is given in Rue (2000). For

each site (i, j), selected in the lexicographical order, we generated a random variate ²(i, j)

from N(0, σ2) and set x(i, j) = βx(i, j)∗ + ²(i, j) where x(i, j)∗ = x(i − 1, j) + x(i +
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1, j) + x(i, j − 1) + x(i, j + 1). To assess convergence of the Gibbs algorithm, we use
Gelman and Rubin (1992) method and choose to monitor sufficent statistics s1(X) =PM0
i=1

PN0
j=1 x(i, j)

2/(M0N0) and s2(X) =
PM0
i=1

PN0
j=1 x(i, j)x(i, j)

∗/(M0N0). Starting from

four quite different initial state of the process were chosen, four Gibbs algorithm were run.

The Gibbs algorithm was repeated at least 320×642 (320 Monte Carlo steps) times. After

that, we began to calculate Gelman and Rubin�s (1992) statistic. As the Gelman and

Rubin�s (1992) convergence criterions are close to 1, we stopped the Gibbs algorithm and

declared that the equilibrium states are achieved.

For each (β, σ∗), 500 data sets were simulated. Based on the simulated data sets, we

applied the proposed Markov chain Monte Carlo stochastic approximation algorithm to

get the maximum likelihood estimates of the unknown parameters. The starting value of

(β, σ∗) is taken to be (0.025, 0.0). In each iteration, we follow the above Gibbs sampler

scheme except that each site (i, j) is selected at random with probability 1/(64× 64), and
then update x(i, j) = βx(i, j)∗ + ²(i, j). We set m = 10000. To illustrate the performance

of the proposed algorithm, we also calculated, as in the Ising model case, the bias, the

mean of the standard deviation estimates and the root mean square error based on the 500

estimates. The obtained results are given in Table 2, which also includes the mean of the

number of iterations for each estimate and the average CPU time for each estimate. It can

be seen that the performance of the stochastic approximation algorithm is almost perfect.

The ratios of the mean of the standard deviation estimates and the root mean square error

are all around 1.0 even for the strong interaction case (β0 = 0.233). For a comparison, the

maximum likelihood estimates of β obtained via the DALL optimization subroutine and

the maximum pseudo-likelihood estimates obtained based on 100 estimates, presented in

Huang and Ogata (1999), are included in Table 2.

Figure 2 (a) depicts the original Mercer and Hall�s wheat yield data on a 20× 25 rec-
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tangle lattice (Andrews and Herzberg, 1985), which was also analysed in Besag (1974) and

Huang and Ogata (1999). We have Þtted the Þrst order auto-normal model and subtracted

the mean from the data, equivalent to adding a shift parameter to the auto-normal model.

Under the periodic boundary assumption, we used the Markov chain Monte Carlo sto-

chastic approximation algorithm with (a1, b1; a2, b2) = (0.3, 2; 0.8, 2) and m = 2000 to Þnd

the maximum likelihood estimates. It took the algorithm 1504 iterations and 63 seconds

CPU time to achieve the maximum likelihood estimation (�β, �σ∗) = (0.237,−1.025) and
standard errors (0.007, 0.034). Starting from (β0,σ0) = (0.0, 0.0), the estimates (βk, �βk)

and (σ∗k, �σ∗k) at each iteration are shown in Figure 2 (b) and (c), respectively. It seems

that a large gain constants sequence in Stage I had effectively forced the estimates to a

small neighborhood of ( �β, �σ∗).

6. Very-Soft-Core Model

A spatial point pattern data is described by the coordinates of pointsX = {xi ∈ A : i =
1, · · · , n} in a planar region A. The joint density of a pattern X of a pairwise interaction

point process is given by (1) with θ = τ and the potential function

Q(X; τ ) =
nX
i=1

X
j>i

φ(||xi − xj ||; τ)

where φ(·; τ ) is a pairwise potential function. The normalizing constant is

C(τ ) =
Z
An
exp

−
nX
i=1

X
j>i

φ(||xi − xj||; τ )
 dx1 · · · dxn,

which cannot be computed analytically in general. For example, φ(t; τ ) = − log{1 −
exp(−t2ρ/τ)}, is called the Very-Soft-Core (VSC) potential function where ρ = n/|A| and
|A| denotes the area of A. The function φ(t; τ ) increases from 0 to 1 when t increases from
0 to ∞. The analysis is performed conditional on the observed number of points.
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We Þtted this Very-Soft-Core model to the Spanish towns data previously analyzed

by Ripley (1977) and Ogata and Tanemura (1984). The data set, shown in Figure 3 (a),

consists of n = 69 points in a 40 × 40 mile area. Ogata and Tanemura (1984) assumed
that the region has a periodic boundary and used the approximate likelihood method to

calculate the approximate MLE, getting �τAML = 0.3036.

The proposed Markov chain Monte Carlo stochastic approximation algorithm was used

to obtain the MLE of the unknown parameter τ . The starting value of τ0 was set at

1.0. To generate the Markov chain, the Metropolis algorithm as described in Diggle et

al. (1994) was used. Let the current value of the process be X = (x(1), . . . , x(69)) and

the current total potential value be Q. A trial value x(i)∗ at the ith site leads to the

potential value Q∗, where x(i)∗ is randomly chosen in some square with vertices at the

points (x(i)1 ± δ, x(i)2 ± δ) (modulo boundary) and δ > 0 is a preassigned parameter.

Then, the Metropolis procedure at the present site (i) continues as follows:

1) if Q∗ ≤ Q, replace x(i) and Q by x(i)∗ and Q∗ respectively;

2) if Q∗ > Q, generate a Uniform(0, 1) random variable U and

2.1) if U ≤ exp(Q−Q∗), set x(i) = x(i)∗ and Q = Q∗;

2.2) otherwise, keep x(i) and Q.

In each iteration of the proposed stochastic approximation algorithm, the same Metropolis-

Hasting algorithm was used; however, each site i was selected at random with 1/69 probabil-

ity and m is set to 500. The two stage Markov chain Monte Carlo stochastic approximation

algorithm with (a1, b1; a2, b2) = (0.3, 2; 0.6, 1) and τ
0 = 0.10 was run to get �τMLE = 0.167

and standard error 0.078. It took about 381 seconds for the Markov chain Monte Carlo

stochastic approximation algorithm to converge in 2121 iterations. Figure 3 (b) shows the

convergence behavior of τk and �τk. If we deÞne an inßuential range of the Very-Soft-Core
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model by r0 such that φ(r0; �τMLE) = 0.1, which gives r0 = 3.02 miles. This is moderately

consistent with the observation of Ripley (1977).

Compared with Ogata and Tanemura�s (1984) result, our estimate �τMLE is quite dif-

ferent from �τAML = 0.3036. To justify our approach, we used the Monte Carlo likelihood

(Geyer and Thompson, 1992; Geyer, 1999) approach to calculate the log-likelihood ratio

log f(X|�τAML)−log f(X|�τMLE). Figure 3 (c) shows the estimates of the log-likelihood ratio
basing on N random samples simulated from f(X|�τMLE), in which the number N increases

from 1 to 10000. It can be seen that the estimates of the log-likelihood ratios are smaller

than zero for large N ; that is, f(X|�τMLE) > f(X|�τAML). To justify our results, we also
used the Ogata-Tanemura method to calculate the log-likelihood function values in (0.0,

0.4). We took 40 equally space points {τ(s) : s = 1, · · · , 40} in (0.0, 0.4) and took 200
equally spaced points in (0, τ (s)) for each s. At each such 200 space points, 20000 random

samples were used to calculate the Þrst derivative of the partition function with a burn-in

phase of 4000 iterations. This completed a process to calculate the log-likelihood function

f(X|τ(s)). We repeated this process 20 times and took their means as the Þnal estimates
of the log-likelihood function. The results obtained are shown in Figure 3 (d).

7. Comparison to the Classical Stochastic Approximation

In order to illustrate the advantage of the proposed algorithm over the classical (Robbins-

Monro, 1951) stochastic approximation algorithm for computing the maximum likelihood

estimation for spatial model (Younes, 1988, 1989; Moyeed and Baddeley, 1991), we have

also applied the classical algorithm to Wiebe�s data. In the classical algorithm, θk is up-

dated according to

θk = θk−1 + γk[−5Q(θk−1) +H(θk−1;Xk)],
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where we have used γk = 1/(1000 + k), and Xk is simulated as in Section 4. After

about 111 seconds, the stochastic approximation algorithm was stopped at the 14746-th

iteration with |θ14746−θ14745| < 10−6. To make a comparison with our Markov chain Monte

Carlo stochastic approximation algorithm, we calculate �∆(k) for the classical stochastic

approximation algorithm (not reported in this paper). We Þnd that θk oscillates very much

and converges gradually to the maximum likelihood estimation. Moreover, �∆(14746) .= 0.206,

which is still not small enough if we use η2 = 0.001 in our convergence criterion.

Geyer (1999) has concluded that direct application of the Robbins-Monro method is

not suitable for computing the maximum likelihood estimation for even moderate precision

and may be only used to get a starting point for the other methods. The simulation

presented above conÞrms this conclusion. However, comparing the results in Figures 1

and above results, we see that there is a drastic improvement of our algorithm over the

classical stochastic approximation algorithm. Morever, our proposal provides a standard

error automatically and the computation precision can be controlled by adjusting η2.

8. Discussion

The proposed Markov chain Monte Carlo stochastic approximation algorithm contains

four new distinctive features: the use of large gain constants in Stage I; the use of adaptive

search directions; the use of off-line averages and the use of a stopping criterion based on

`(�θk). Each of those has contributed to the improvements of our proposed Markov chain

Monte Carlo stochastic approximation algorithm over the classical stochastic approxima-

tion algorithm.

Another key idea of our algorithm is to estimate �θ, 5 logC(�θ) and 52 logC(�θ) simul-

taneously. This seems inefficient at Þrst but in fact very little extra work is required. Since
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we always need to estimate the information matrix, the quantity52 logC(�θ) should always

be estimated. No extra computation needed to estimate 5 logC(�θ).

The traditional stopping criterion for an iterative algorithm is based on the relative

change of the iterates. For such a stopping criterion in the case of the Monte Carlo

Expectation-Maximization algorithm, see Booth and Hobert (1999). We saw in Section 7

that such a criterion does not guarantee convergence. Geyer (1999) has advocated stopping

based on the Monte Carlo simulation error. Since our algorithm is iterative and Monte

Carlo based, the stopping criterion has to depend on both. The criterion in Section 3 does

so.

There are two crucial requirements to implement the Monte Carlo likelihood method

(Geyer and Thompson, 1992; Geyer, 1999). The Þrst is the requirement of a starting value

which is sufficiently close to the maximum likelihood estimate (Geyer, 1999). The second is

that there exist simple sufficient statistics for the model (Huffer and Wu, 1998). While the

maximum pseudo-likelihood estimation and stochastic approximation methods can be used

to Þnd a good starting value, the second requirement is not easy to overcome. In models

like the Ising model, the Strauss hard-core model and the auto-logistic regression model,

simple sufficient statistics do exist and the Monte Carlo likelihood method can be applied.

However, when simple sufficient statistics do not exist, such as for the Very-Soft-Core

model discussed in Section 6 and for other more complicated spatial point pattern models

(see, for example, Högmander and Särkkä, 1999), the proposed stochastic approximation

algorithm should be preferred. If we use the Monte Carlo likelihood method in the later

case, we have to store in the computer memory all the simulated conÞgurationsX1, . . . ,XM ,

where M usually depends on the precision desired and is very large. We keep in mind

that each conÞguration Xi is a high-dimensional vector, representing a graph or a spatial

point pattern. On the other hand, in the proposed Markov chain Monte Carlo stochastic
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approximation algorithm, one only have to stored in the computer memory, in addition

to the current estimates and their off-line averages, Xk,1, . . . ,Xk,m for iteration k and the

number m does not depend on the precision desired. We believe that the proposed Markov

chain Monte Carlo stochastic approximation will be useful especially in the latter case.
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Table 1: Biases (×10−3), standard deviations (×10−2), the root mean square error

(×10−2), and efficiency coefficients of the estimators of the Ising model.

MLE (SA) MLE (DALL)

θ0 -0.40 -0.20 0.0 0.20 0.40 -0.40 -0.20 0.0 0.20 0.40

Bias -0.14 0.07 1.01 0.14 1.05 0.94 -0.24 1.47 -0.60 -0.43

SD 0.68 1.00 1.10 1.00 0.67 0.71 0.96 1.08 1.11 0.68

RMS 0.68 1.04 1.15 0.92 0.70 0.78 0.89 1.03 1.35 0.70

EFF 1.00 0.96 0.96 1.08 0.98 0.91 1.08 1.05 0.82 0.97

AVEN 915 322 228 330 936

AVET 30s 11s 7s 12s 31s

MPLE

θ0 -0.40 -0.20 0.0 0.20 0.40

Bias 0.01 -0.57 -1.51 -0.11 -0.20

SD 1.22 1.10 1.08 1.19 1.21

RMS 3.93 1.35 1.04 1.70 3.89

EFF 0.31 0.82 1.04 0.70 0.31

In Tables 1 and 2, SD denotes the mean of the standard deviation estimates; RMS denotes the

root mean square error; EFF denotes the ratio of SD and RMS; AVEN denotes the mean of the

number of iterations for each estimate; AVET denotes the average CPU time.
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Table 2: Bias (×10−3), RMS (×10−2), SD (×10−2), and EFF of

the ML estimators of the Auto-normal model.

β σ∗ = 0.0

true Bias RMS SD EFF Bias RMS SD EFF AVEN AVET

0.050 -0.560 1.07 1.08 0.99 -0.61 1.07 1.11 1.04 985 179s

0.110 -0.40 0.96 0.95 0.99 0.96 1.07 1.14 1.07 1042 187s

0.159 0.19 0.77 0.77 1.00 0.60 1.14 1.15 1.01 1138 206s

0.233 -0.09 0.29 0.29 1.00 0.84 1.17 1.16 1.00 1688 306s

β MLE(DALL) β MPLE

true Bias SD EFF true Bias SD EFF

0.049 1.14 1.16 0.89 0.049 1.11 1.16 0.88

0.110 -0.01 1.00 0.95 0.110 0.54 1.06 0.85

0.159 0.38 0.81 0.95 0.159 0.62 0.86 0.85

0.233 0.01 0.29 1.10 0.233 0.16 0.42 0.53
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Figure 1: Transferred Wiebe�s wheat data: (a) The transferred wiebe�s wheat data on a

125 × 20 rectangle lattice, in which the black circe at a given site denotes �large than or
equal to the mean value� and no sign at a given site denotes �less than the mean value�;

(b) The curve of the log-likelihood function, in which denotes the log-likelihood values

calculated via the Onsager formula and - - - denotes the log-likelihood values calculated

via the Ogata and Tanemura�s method. (c) θk (- - -) and �θk ( ) at each iteration of the

MCMC-SA algorithm; (d) �∆k at each iteration of the MCMC-SA algorithm.
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Figure 2: Mercer and Hall�s wheat yield data: (a) the wheat yields against (i−1)×25+ j,
where (i, j) denotes a site on a 20× 25 rectangle lattice; (b) βk (- - -) and �βk ( ) at each

iteration of the MCMC-SA algorithm; (c) σ∗k (- - -) and �σ∗k ( ) at each iteration of the

MCMC-SA algorithm.
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Figure 3: Spanish towns data: (a) locations of 69 Spanish towns in a 40 miles × 40 miles
area; (b) τk (- - -) and �τk ( ) at each iteration of the MCMC-SA algorithm; (c) the

estimates of log f(X|�τAML) − log f(X|�τMLE) against N , the number of random samples;

(d) the estimates of log-likelihood values log f(X|τ ) in (0, 0.4).
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