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Abstract

Stock loans are collateral loans with stocks used as the collateral. This paper is
concerned with a stock loan valuation problem in which the underlying stock price
is modeled as an exponential phase-type Lévy model. The valuation problem is
formulated as the optimal stopping problem of a perpetual American option with
a time-varying exercise price. When a transformation is applied to the perpetual
American option, it becomes a perpetual American call option in an economy with
a negative interest rate, thus causing standard Wiener-Hopf techniques to fail. We
solve this optimal stopping problem using a variational inequality approach.
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1. Introduction

A stock loan, a type of equity securities lending service, is a loan that is col-
lateralized with stocks and issued by a financial institution (the lender) to a client
(the borrower). The size of the securities lending market reached its peak at nearly
US$850 billion in 2007. After short-selling restrictions were imposed on the
U.S. securities market in 2008, the value of U.S. equities on loan was still nearly
US$250 billion; see Standard & Poor’s (2009). This huge value of stock loans
transactions has stimulated interest in the appropriate valuation of these loans in a
general market situation.
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A stock loan contract grants the borrower the right to repay the loan at any time
or simply to default on it and lose the collateral. The borrower’s early redemption
right can be regarded as a perpetual American option, that is, the borrower can
exercise the option at any time without a time limit. The value of this perpetual
American option is therefore of central importance to the problem of stock loan
valuation.

That value can be expressed as an ordinary perpetual American call option
with a negative (effective) interest rate, which creates the major challenge of stock
loan pricing. Consider the case of geometric Brownian motion (GBM) for the
stock price. The optimal exercise rule of a perpetual American call option is to
exercise the option the first time the stock price rises and crosses a constant level,
that is, the constant optimal exercise boundary. If the interest rate is positive,
then the stock price will cross any fixed boundary almost surely. If the interest
rate is negative, in contrast, the problem becomes complicated. Given any fixed
boundary level greater than the current stock price, there is a positive probability
that the stock price will never cross that level.

Xia and Zhou (2007) are pioneers in solving the stock loan problem. They
valued stock loans using the classical GBM model and a purely probabilistic
approach. Zhang and Zhou (2009) then extended their framework to a regime
switching model and solved the problem using variational inequalities. Dai and
Xu (2009) investigated the stock loan problem with finite maturity under GBM,
and Yam et al. (2010) considered callable stock loans.

Although most studies on the stock loan valuation problem adopt the GBM
approach for the underlying stock price, empirical evidence (e.g., Andersen et
al., 2002; Pan, 2002; Eraker et al., 2003) shows that the jump diffusion model
would be a better asset price model for capturing the heavy tails of the empirical
distribution. A jump diffusion model with a flexible jump distribution is therefore
worth considering for stock loan valuation.

Merton (1976) proposes a jump diffusion model for option pricing that em-
ploys a Gaussian distributed jump size. Another notable jump diffusion model is
the double-exponential jump diffusion model proposed by Kou (2002). The gen-
eralization of the jump diffusion model is an exponential Lévy model, such as the
variance-gamma model (Madan et al., 1998), CGMY model (Carr et al., 1999) or
normal inverse Gaussian model (Barndorff-Nielssen, 2000).

Sun (2010) recently considered the stock loan valuation problem under the
framework of the double-exponential jump diffusion model. Although this con-
stitutes a good start, the asset return distribution is not sufficiently flexible to cap-
ture the empirical distribution implied by market data. For this reason, we here
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consider phase-type jump diffusion for stock loan valuation.
Phase-type distribution is dense over the class of all positive valued distribu-

tions. By making use of this fact, Asmussen et al. (2007) show that the class
of phase-type jump diffusion models is dense over all exponential Lévy models.
In other words, the option price derived from phase-type jump diffusion models
can be used to approximate the corresponding price under a general exponential
Lévy model. Asmussen et al. (2007) approximate the CGMY model by phase-
type jump diffusion. In fact, the phase-type jump diffusion model embraces both
the Kou (2002) model and the mixed-exponential jump diffusion model (Cai and
Kou, 2011) as special cases.

Asmussen et al. (2004) solved the price of the perpetual American put option
with a positive interest rate using phase-type jump diffusion models. They em-
ployed the Wiener-Hopf factorization technique proposed in Mordecki (2002) to
derive the optimal exercise boundary. The pricing problem can then be converted
into the evaluation of an expectation at the given exercise boundary.

Although Wiener-Hopf factorization is useful in solving American option pric-
ing problems involving Lévy processes, particularly, phase-type Lévy models, it
relies heavily on the assumption of a positive interest rate or, in the limiting case,
zero interest rate. The method is not applicable to a negative effective interest
rate in the stock loan pricing problem. In this paper, we adopt the variational in-
equality approach for American option pricing (Zhang and Zhou, 2009; Israel and
Rincon, 2008).

Using the phase-type jump diffusion model, we show that the price of the per-
petual American option satisfies an ordinary integro-differential equation (OIDE).
The solution of this OIDE is closely linked to the root characteristics of a Cramér-
Lundberg equation (C-L equation). The root characteristics of the C-L equation
are first investigated in a special case in which the random jump size follows a
hyperexponential distribution, a special phase-type distribution. By making use
of this special case, we then construct a novel transformation to extend the result
to a fairly general class of phase-type Lévy models. The derived analytical pricing
formula is not only useful in pricing stock loans, but also in pricing a traditional
perpetual American call option on a dividend-paying stock, which follows the
phase-type Lévy model where the dividend yield is greater than the interest rate.

The remainder of the paper is organized as follows. Section 2 introduces the
model and the stock loan valuation problem. Section 3 presents several properties
of stock loans in general phase-type Lévy models, and Section 4 derives the ana-
lytical formulas of stock loans in a fairly general phase-type Lévy model. Section
5 concludes the paper.
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2. Problem formulation

This section presents the formulation of stock loan valuation in a phase-type
Lévy model. We begin by introducing a phase-type jump-diffusion model for the
underlying stock price.

2.1. The stock price process
Phase-type distributions have many applications in queuing theory, insurance

and ruin probability. The classical book by Asmussen (2000) contains detailed
information in this area. We extract a number of important properties that are
useful in the present paper. Consider a continuous-time Markov process with one
transient state and one absorption state. The intensity matrix is given by(

−θ θ
0 0

)
,

where θ > 0. If Y is the absorption time of this Markov process, then it follows
an exponential distribution. The cumulative distribution function is

FY (y) = 1− e−θy. (1)

A finite mixture of exponential distribution is called hyperexponential distribu-
tion, which can be expressed as the absorption time of a continuous-time Markov
process with m transient states and one absorption state with an intensity matrix
of the form 

−θ1 · · · 0 θ1
... . . . ...

...
0 · · · −θm θm
0 · · · 0 0

 .

The cumulative distribution function becomes

FY (y) =
m∑
i=1

αi
(
1− e−θiy

)
, (2)

where αi ≥ 0 and
∑m

i=1 αi = 1. αi represents the probability of the process
starting at state i. Using matrix notation,

FY (y) = 1−αeTy1, (3)

where α = (α1, . . . , αm), T = diag(−θ1, . . . ,−θm), and 1 = (1, . . . , 1)T .
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Generalizing this concept, phase-type distribution describes the absorption
time of a finite state continuous-time Markov process with m transient states
and one absorption state. Let T be the intensity matrix of the transient states
and α = (α1, . . . , αm) be an initial probability vector. Phase-type distribution is
parametrized by (m,T,α). The full intensity matrix of the Markov process can
be written as

S =

(
T t
0 0

)
,

where t = −T1. The cumulative distribution function is

FY (y) = 1−αeTy1, (4)

the density function is
fY (y) = αeTyt, (5)

and the moment generating function is

M(t) = E[etY ] = α(−tI−T)−1t. (6)

Phase-type distributions constitute a very rich class. As shown in Johnson and
Taafe (1988), phase-type distribution is dense in the field of all distributions on
(0,∞). When T is a diagonal matrix, this distribution is reduced to a hyperexpo-
nential distribution.

A common application of the phase-type distribution is the modeling of in-
terclaim arrival time (e.g., Asmussen, 2000; Song et al., 2010). Asmussen et al.
(2004) introduced phase-type distribution to model jumps in stock prices. We fol-
low their model, in which the stock price process, {St}, defined on a risk-neutral
probability space

(
Ω,P, {Ft}t≥0 ,F

)
is given by

St = exp (Xt), (7)

Xt = x+ µt+ σWt +
Nt∑
i=1

Yi,

where µ = r − σ2/2 − λ
(
E(eYi)− 1

)
. The constant parameters r and σ are

the instantaneous interest rate and the volatility of the stock, respectively. The
stochastic process {Nt} represents a Poisson process with constant intensity λ,
and the jump size Yi, i ∈ N, follows a two-sided phase-type distribution with the
density function,

fY (y) = pα+eT+yt+I{y≥0} + (1− p)α−e−T−yt−I{y<0}. (8)
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As the jump diffusion financial market is incomplete, not all of the contingent
claims can be perfectly hedged, and there are infinitely many equivalent martin-
gale measures. Our choice of martingale measure, P, is the one that preserves the
phase-type structure of the log-price Xt, as proposed by Asmussen et al. (2004).

2.2. Stock loans
Stock loans are collateral loans in which stocks are used as collateral. The

borrower receives the loan principal (q), pays the service charge (c), and has the
right to repay the principal with interest (continuously compounded at rate γ) and
regain the stock at any future time. These transactions can be summarized as
follows.

• The borrower receives a cash amount of q− c and V0, a perpetual American
option with time-varying strike price qeγt.

• The bank receives S0 (one unit of stock) as collateral.

By equating the benefits of both parties, the service charge is deduced as

c = q + V0 − S0. (9)

The corresponding perpetual American option has the following presentation.

V0 = V (x) = ess sup
τ∈T0

E
[
e−rτ (Sτ − qeγτ )+ I{τ<∞}|S0 = ex

]
, (10)

where Tu, u ≥ 0, is the set of all stopping time taking values in the time interval
(u,∞). By taking the transformation S̃t = Ste

−γt, the value can be written as

V (x) = ess sup
τ∈T0

E
[
e−(r−γ)τ

(
S̃τ − q

)+

I{τ<∞}|S̃0 = ex
]
, (11)

which is the value of a perpetual American option with a constant strike price and
a possibly negative effective interest rate, r̃ = r − γ.

From now on, we use the transformed stock price process S̃t as the underlying
stock of the American option, and define X̃t as the transformed log-price. Their
dynamics are given by

S̃t = exp (X̃t), (12)

X̃t = x+ µ̃t+ σWt +
Nt∑
i=1

Yi, (13)

where µ̃ = r − γ − σ2/2− λ
(
E(eYi)− 1

)
.
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3. Stock loan properties in a phase-type Lévy model

Several basic properties of the perpetual American option associated with
stock loans are useful in deriving the closed-form solution in a phase-type Lévy
model. Take S = ex and write v(S) = V (lnS) = V (x). Lemmas 3.1 and 3.2 be-
low are the stock loan properties of the underlying stock following a continuous-
time Markov process. These results are taken from Xia and Zhou (2007) and the
proofs are thus omitted.

Lemma 3.1. v(S), a deterministic function of the initial stock price S, satisfies
the following properties.

1. (S − q)+ ≤ v(S) ≤ S for all S > 0.
2. v(S) is convex, continuous and nondecreasing in S on (0,∞).

Lemma 3.2. Define k = inf {S > 0 : S − q ≥ v(S)} ≥ q, where inf ∅ = ∞.
Then, {S > 0 : S − q ≥ v(S)} = [k,∞).

Theorem 3.1. If X̃t follows a Lévy process, then the optimal stopping time takes
the form

τb = inf
{
t ≥ 0 : X̃t ≥ b

}
, (14)

where b is a constant.

Proof. The stock loan value at time t can be written as

Vt = v(St)

= ess sup
τ∈Tt

E
[
e−r(τ−t)

(
Ste

Xτ−Xt − qeγτ
)+
I{τ<∞} | Ft

]
= eγt ess sup

τ∈Tt
E
[
e−r(τ−t)

(
e−γtSte

Xτ−Xt − qeγ(τ−t)
)+
I{τ<∞} | Ft

]
= eγt ess sup

τ∈T0
E
[
e−rτ

(
xeXτ − qeγτ

)+
I{τ<∞} | F0

]
x=e−γtSt

= eγtv(e−γtSt).
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Hence, the optimal stopping time (cf. Karatzas and Shreve, 1998, Chapter 2.5) is

τ ∗ = inf
{
t ≥ 0 : St − qeγt ≥ v(St)

}
= inf

{
t ≥ 0 : St − qeγt ≥ eγtv(e−γtSt)

}
= inf

{
t ≥ 0 : Ste

−γt − q ≥ v(e−γtSt)
}

= inf
{
t ≥ 0 : e−γtSt ≥ k

}
= inf

{
t ≥ 0 : X̃t ≥ ln k

}
,

where k is the value defined in Lemma 3.2.

Theorem 3.1 asserts that the optimal stopping time is a first passage time. It is
optimal to exercise the perpetual American option at the first time the transformed
log-price exceeds a predetermined level. Such a level is called the optimal exercise
boundary. We denote the optimal exercise boundary by b∗ and the optimal stop-
ping time by τb∗ . Theorem 3.1 greatly simplifies the optimization problem. The
original problem requires a search of all possible stopping times. However, the
optimal stopping time is a first passage time, and hence we only need to search for
an optimal exercise boundary. This is a one-dimensional optimization problem.
In other words, the value function is given by

V (x) = sup
b≥max{ln q,x}

Vb(x) = sup
b≥max{ln q,x}

E
[
e−r̃τb

(
eX̃τb − q

)+

I{τb<∞}

∣∣∣∣ X̃0 = x

]
.

(15)

3.1. Characterization of the function V (x)

We now show that V (x) is a solution of an OIDE and derive its functional
form. To this end, we first introduce the C-L equation:

G(β) =
σ2

2
β2+µ̃β+λpα+(−βI−T+)−1t++λ(1−p)α−(βI−T−)−1t−−λ = r̃.

(16)
B+ denotes the collection of roots to the C-L equation whose real parts are larger
than or equal to 1, and B− collects those roots with negative real parts. The root
characteristics of the C-L equation play a central role in our problem. The follow-
ing properties are useful.

1. {e−rtSt}t≥0 =
{
e−r̃tS̃t

}
t≥0

is a martingale implying that 1 ∈ B+.
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2. The function G(β) satisfies

E
[
eβX̃t

]
= eG(β)t (17)

where β belongs to some bounded interval covering [0, 1].

If G′(1) ≥ 0, then as shown in Section 4 V (x) = ex and q = c. In such a
situation, a bank would have no intention of trading the stock loan with the given
loan interest rate γ and current stock price S0. An interesting case occurs when
G′(1) < 0. Thus, we focus on this latter case for the time being.

When G′(1) < 0, γ > r and the effective interest rate r̃ = r − γ is negative,
which can be proven by utilizing the definition of G(β) in (17):

G(β) =
σ2

2
β2 +

(
r − γ − σ2

2
− λ

(
E
[
eY1
]
− 1
))

β + λ
(
E
[
eβY1

]
− 1
)
. (18)

Hence,

G′(1) = r − γ +
σ2

2
+ λE

[
Y1e

Y1 − eY1 + 1
]
. (19)

As yey − ey + 1 ≥ 0 for all y ∈ R, G′(1) < 0 implies that

γ > r +
σ2

2
+ λE

[
Y1e

Y1 − eY1 + 1
]
≥ r.

As the effective interest rate r̃ is negative, the Wiener-Hopf factorization tech-
niques of Mordecki (2002) and Asmussen et al. (2004) for perpetual American
options subject to Lévy processes cannot be applied to the stock loan valuation
problem using a phase-type Lévy model.

Without imposing a condition on G′(1), the following theorem characterizes
the representation of the function V (x). This new result embraces the stock loan
value in a double-exponential jump diffusion model (Sun, 2010) as a special case.

Theorem 3.2. The value function Vb(x) in (15) satisfies the OIDE,{
(L − r̃)Vb(x) = 0 x < b

Vb(x) = ex − q x ≥ b
, (20)

for any given b ∈ R, where

Lh(x) =
σ2

2

d2h

dx2
(x) + µ̃

dh

dx
(x) + λ

∫ ∞
−∞

(h(x+ y)− h(x)) fY (y)dy.

9



Furthermore, the optimal value function takes the form

V (x) =

{ ∑
βj∈B+

ωje
βjx x < b∗

ex − q x ≥ b∗
(21)

for some ωj , j ∈ {i | βi ∈ B+} to be determined according to the model, where
b∗ is the optimal exercise boundary obtained from (15).

Proof. An application of the Feymann-Kac formula to Vb(x) in (15) with respect
to the stock price dynamics (7) produces the OIDE of (20) for a given b. Consider
the following function as a candidate solution to the OIDE with b = b∗.

u(x) =

{ ∑
βj∈B+

ωje
βjx x < b∗

ex − q x ≥ b∗
,

where ωj , j ∈ {i | βi ∈ B+} are chosen such that u(·) satisfies the conditions
described in Lemma 3.1. In particular, we have (ex− q)+ ≤ u(x) ≤ ex for all x ∈
R. This obviously satisfies the governing equation of the OIDE (20). However,
it may not be continuously differentiable at b∗. To get around this problem, we
construct a sequence of functions {un(x)}∞n=1 such that the following hold true.

1. un(x) is twice continuously differentiable for all n ∈ N.
2. For x ≤ b∗ or x ≥ b∗ + 1

n
, un(x) ≡ u(x).

3. For b∗ ≤ x ≤ b∗ + 1
n

, 0 ≤ un(x) ≤M1, where M1 is a positive constant.

This sequence of functions has the limit u(x) for n→∞ because of the continuity
of u(x) shown in Lemma 3.1.

For any x < b∗, we have

(L − r̃)un(x) = λ

∫ b∗−x+1/n

b∗−x
[un(x+ y)− u(x+ y)] fY (y)dy. (22)

Using the fact that

|un(x)− u(x)| ≤ max
x∈(b∗,b∗+1/n]

|un(x)|+ max
x∈(b∗,b∗+1/n]

|u(x)| ≤M2,

where M2 = M1 + eb
∗+1, we have

|Lun(x)− r̃un(x)| ≤ λpα+t+

∫ b∗−x+1/n

b∗−x
[un(x+ y)− u(x+ y)] dy (23)

≤ λpα+t+M2

n
→ 0 uniformly for all x < b∗ , as n→∞.
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Applying Itō’s formula to
{
e−r̃tun(X̃t)

}
t≥0

, we obtain a sequence of local

martingales
{
M

(n)
t

}
t≥0

for n ∈ N as follows.

M
(n)
t = e−r̃(t∧τb∗ )un(X̃t∧τb∗ )− un(x)−

∫ t∧τb∗

0

e−r̃s
[
(L − r̃)un(X̃s)

]
ds. (24)

We claim that it is a martingale for any n ∈ N. For any t ≥ 0,

|e−r̃(t∧τb∗ )un(X̃t∧τb∗ )|
≤ |e−r̃tun(X̃t)I{t<τb∗}|+ |e

−r̃tun(X̃τb∗ )I{t≥τb∗ ,X̃τb∗<b+1/n}|
+ |e−r̃tun(X̃τb∗ )I{t≥τb∗ ,X̃τb∗≥b+1/n}|

≤ |e−r̃tu(X̃t)I{t<τb∗}|+M1e
−r̃t + e−r̃t(eX̃τb∗ − q)I{τb∗<∞}. (25)

By the definition in (24) and noting (23) and (25), we establish the inequality:

|M (n)
t | ≤ |e−r̃tu(X̃t)I{t<τb∗}|+ |un(x)|+M1e

−r̃t

+ e−r̃t(eX̃τb∗ − q)I{τb∗<∞} −
λpα+t+M2

(
e−r̃t − 1

)
nr̃

. (26)

For the first term on the right-hand side of (26), we have, for any fixed T > 0,

Ex

[
sup
t∈[0,T ]

e−r̃tu(X̃t)I{t<τb∗}|

]
≤ e−r̃TEx

[
esupt∈[0,T ] X̃t

]
≤ e−r̃TEx

[
ex+µ̃T+σ supt∈[0,T ]Wt+

∑NT
i=1 Y

+
i

]
= 2Φ(σ

√
T ) exp

(
−r̃T + x+ µ̃T +

σ2T

2
+ pλTα+

(
−I−T+

)−1
t+

)
< ∞,

where Φ(·) is the cumulative distribution function of the standard normal distri-
bution. It is now easy to see that

Ex sup
t∈[0,T ]

|M (n)
t | <∞, (27)
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which guarantees that M (n)
t is a true martingale for all n. For x < b∗,

u(x) = lim
n→∞

un(x)

= lim
n→∞

Ex

[
e−r̃(t∧τb∗ )un(X̃t∧τb∗ )

]
− lim

n→∞
ExM

(n)
t

− lim
n→∞

Ex

[∫ t∧τb∗

0

e−r̃s
[
(L − r̃)un(X̃s)

]
ds

]
= Ex

[
e−r̃(t∧τb∗ )u(X̃t∧τb∗ )

]
,

where the last equality is a consequence of the dominated convergence theorem
(DCT). Let t→∞ and apply Fatou’s lemma to obtain

u(x) = lim
t→∞

Ex

[
e−r̃(t∧τb∗ )u(X̃t∧τb∗ )

]
= lim

t→∞
Ex

[
e−r̃(t∧τb∗ )u(X̃t∧τb∗ )I{τb∗<∞}

]
+ lim

t→∞
Ex

[
e−r̃(t∧τb∗ )u(X̃t∧τb∗ )I{τb∗=∞}

]
≥ Ex

[
e−r̃(τb∗ )u(X̃τb∗ )I{τb∗<∞}

]
= Ex

[
e−r̃(τb∗ )(eX̃τb∗ − q)I{τb∗<∞}

]
.

In addition,

Ex

[
e−r̃(t∧τb∗ )u(X̃t∧τb∗ )

]
= Ex

[
e−r̃(t∧τb∗ )(eX̃t∧τb∗ − q)I{τb∗≤t}

]
+ Ex

[
e−r̃(t∧τb∗ )u(X̃t∧τb∗ )I{τb∗>t}

]
. (28)

As
e−r̃(t∧τb∗ )(eX̃t∧τb∗ − q)I{τb∗≤t} ≤ e−r̃(t∧τb∗ )(eX̃t∧τb∗ − q)I{τb∗<∞}

and
Ex

[
e−r̃(t∧τb∗ )(eX̃t∧τb∗ − q)I{τb∗<∞}

]
<∞,

the DCT implies that the first term on the right-hand side of (28) converges to

Ex

[
e−r̃(τb∗ )(eX̃τb∗ − q)I{τb∗<∞}

]
when t→∞.

For the second term, we claim that

Ex

[
e−r̃(t∧τb∗ )u(X̃t∧τb∗ )I{τb∗>t}

]
→ 0,

12



as t→∞. Consider the following two cases.

Case 1: G′(1) < 0. There exists a κ0 > 1 such that G(κ0) − r̃ < 0. In addition,
there exists a C0 > 0 such that u(x) < C0e

κ0x for all x < b∗. Hence,

Ex

[
e−r̃(t∧τb∗ )u(X̃t∧τb∗ )I{τb∗>t}

]
< Ex

[
C0e

−r̃t+κ0X̃tI{τb∗>t}

]
≤ Ex

[
C0e

−r̃t+κ0X̃t
]

→ 0 when t→∞.

Case 2: G′(1) ≥ 0. As V (x) ≤ ex for all x ∈ R, we have

Ex

[
e−r̃(t∧τb∗ )u(X̃t∧τb∗ )I{τb∗>t}

]
≤ Ex

[
e−r̃t+X̃tI{τb∗>t}

]
. (29)

Consider the following probability measure P̂

dP̂
dP

= e−r̃t+X̃t . (30)

In Appendix A of Asmussen et al. (2004), it is shown that {X̃t}t>0 still follows a
phase-type Lévy process under P̂, but its Lévy exponent is replaced by

Ĝ(s) = G(1 + s)−G(1). (31)

Therefore,

Ex

[
e−r̃t+X̃tI{τb∗>t}

]
= Êx

[
I{τb∗>t}

]
→ P̂x (τb∗ =∞) , (32)

as t→∞. However, the fact that Ĝ′(0) = G′(1) ≥ 0 and Ĝ(0) = 0 implies that

P̂x(τb∗ <∞) = lim
r̃→0

Êx

[
e−r̃τb∗

]
= 1, (33)

which proves our claim. Therefore, the candidate solution u(·) is indeed the solu-
tion.

Theorem 3.2 can be further streamlined to express the solution in the most
important situation, that is, G′(1) < 1. Inspired by Zhang and Zhou (2009), we
now show that the solution of V (x) should exclude the term corresponding to
βj = 1 in Theorem 3.2 under such a condition.
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Proposition 3.1. If G′(1) < 0, then the value function in Theorem 3.2 becomes

V (x) =

{ ∑
βj∈B+\{1}

ωje
βjx x < b∗

ex − q x ≥ b∗
.

Proof. Denote j0 as the index such that βj0 = 1. Then, we need to show that
ωj0 = 0. For t ≤ τb∗ ,

E
[
e−r̃tV (X̃t) | X̃0 = x

]
= V (x) +

∫ t

0

e−r̃s (L − r̃)V (X̃s)ds = V (x).

Hence, for any T > 0,

V (x) = E
[
e−r̃τb∗∧TV (X̃τb∗∧T ) | X̃0 = x

]
≤ E

[
e−r̃τb∗V (X̃τb∗ )I{τb∗<T} | X̃0 = x

]
+ E

[
e−r̃TV (X̃T )I{τb∗≥T} | X̃0 = x

]
.

It is clear that the first term converges to

E
[
e−r̃τb∗

(
eX̃τb∗ − q

)
I{τb∗<∞} | X̃0 = x

]
as T → ∞. It remains to show that the second term also converges to zero as
T →∞.

By Theorem 3.2, V (x) is a linear combination of eβix for x < b∗. Consider
the validity of

E
(
e−r̃T eκX̃T

)
→ 0 as T →∞

for different values of κ.
Note that E

(
e−r̃T eκX̃T

)
= e(G(κ)−r̃)T . For κ = 1, the expectation becomes

e0 = 1 and does not converge to zero. Hence, the term ωj0e
x should be removed

from the linear combination by setting its coefficient to zero.
As G′(1) < 0, there exists a κ0 > 1 such that G(κ0) − r̃ < 0. In addition,

for any βi ∈ B+\ {1}, there exists a Ki > 0 such that eβix ≤ Kie
κ0x for x ∈

(−∞, b∗). Therefore, E
(
e−r̃T eβiX̃T

)
≤ KiE

(
e−r̃T eκ0X̃T

)
→ 0 as T →∞.

We conclude this section by summarizing its major findings and the remaining
tasks to be investigated in the next section. For any given exponential phase-type
Lévy model, the stock loan valuation formula has the general representation in
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Theorem 3.2. If G′(1) ≥ 0, then the stock loan will not be traded, a scenario that
is addressed in the next section. If G′(1) < 0, then the stock loan pricing formula
is given by Proposition 3.1, which involves solving the roots of the C-L equation
(16), identifying the roots with a real part greater than 1, and determining the op-
timal exercise boundary b∗. However, the characterization of the real part of the
roots of the C-L equation (16) is in general not straightforward. The following
section presents several important special cases for which the root characteris-
tics are fully investigated and the stock loan value is obtained as a closed-form
solution.

4. Valuation formulas

We first solve the problem under the assumption of hyperexponential jump
diffusions, a special case of phase-type jump diffusions. Although the hyperex-
ponential jump diffusion model has been investigated by Asmussen et al. (2007)
for equity default swaps, by Cai (2009) for the first passage time problem, and
by Cai and Kou (2011) for barrier and lookback options, these authors consider
only the case of a positive interest rate. The optimal exercise boundary of a stock
loan has yet to be investigated. We extend the solution from this hyperexponential
case to a fairly general class of phase-type jump diffusion models by constructing
a transformation using the argument principle. Finally, we analyze the stock loan
value when G′(1) ≥ 0.

4.1. Hyperexponential jumps
Suppose that T+ and T− take the following forms

T+ =

 −η1 · · · 0
... . . . ...
0 · · · −ηm

, T− =

 −θ1 · · · 0
... . . . ...
0 · · · −θn

, (34)

where ηi > 1 for i = 1, . . . ,m and θk > 0 for k = 1, . . . , n. This phase-
type distribution is reduced to a hyperexponential distribution. The following
proposition summarizes the root characteristics of the C-L equation (16).

Lemma 4.1. If G′(1) < 0, then the C-L equation G(β) = r̃ in (16), in which T+

and T− are defined as in (34), has exactly n distinct negative real roots and m+ 2
distinct real roots that are no less than 1.
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Proof. Under the hyperexponential jump diffusion model,

G(β) =
σ2

2
β2 + µ̃β + λp

m∑
i=1

α+
i ηi

ηi − β
+ λ(1− p)

n∑
j=1

α−i θj
θj + β

− λ. (35)

The followings properties are clear.

1. G(0) = 0;
2. G(∞) =∞, G(−∞) =∞;
3. G(ηi−) =∞, G(ηi+) = −∞ for i = 1, . . . ,m;
4. G(−θj−) = −∞, G(−θj+) =∞ for j = 1, . . . , n; and
5. G(β) is continuous except for the values ηi, i = 1, . . . ,m and −θj , j =

1, . . . , n,

where G(u±) = lim
x→u±

G(x). All of these imply that G(β) = r̃ has at least one

root in each of the intervals

(−∞,−θn), (−θn,−θn−1), . . . , (−θ2,−θ1), (η1, η2), . . . , (ηm−1, ηm), (ηm,∞).

Moreover, G(β) = r̃ has the same number of roots as the m + n + 2 degree
polynomial

(G(β)− r̃)
m∏
i=1

(ηi − β)
n∏
j=1

(θj + β).

Therefore, it has at most m+ n+ 2 real roots.
As G(β) is decreasing over the interval (−θ1, 0), G(0) = 0 and G(−θ1+) =

∞, there is no root in the interval (−θ1, 0). As 1 is always a root, and complex
roots always exist in pairs, there are two real roots in the interval (0, η1). The
assumption that G′(1) < 0 ensures that the two real roots in (0, η1) are distinct
and that both are no less than 1.

By Proposition 3.1, the value function of a stock loan takes the form, V (x) =
supb≥max(ln q,x) Vb(x), where

Vb(x) =


m+1∑
j=1

ωje
βjx x < b

ex − q x ≥ b

, (36)
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for any given constant b ∈ R, and 1 < β1 < β2 < . . . < βm+1 are roots of the C-L
equation (16). Moreover, (L − r̃)Vb(x) = 0 for x < b. Therefore,

0 = LVb(x)− r̃Vb(x)

=
σ2

2

d2Vb
dx2

(x) + µ̃
dVb
dx

(x) + λ

∫ ∞
−∞

(Vb(x+ y)− Vb(x)) fY (y)dy − r̃Vb(x)

=
m+1∑
j=1

ωje
βjx (G(βj)− r̃)− λ

∫ ∞
b−x

m+1∑
j=1

ωje
βj(x+y)fY (y)dy

+λ

∫ ∞
b−x

(
ex+y − q

)
fY (y)dy

= −λ
m+1∑
j=1

ωje
βjx

m∑
i=1

pα+
i

ηi
ηi − βj

e−(ηi−βj)(b−x) + λex
m∑
i=1

pα+
i

ηi
ηi − 1

e−(ηi−1)(b−x)

−λq
m∑
i=1

pαie
−ηi(b−x)

= λ
m∑
i=1

pα+
i e

ηix

(
ηi

ηi − 1
e−(ηi−1)b − qe−ηib −

m+1∑
j=1

ωj
ηi

ηi − βj
e−(ηi−βj)b

)
. (37)

This implies the following m linear equations for ωi.

m+1∑
j=1

ωj
ηi

ηi − βj
e−(ηi−βj)b =

ηi
ηi − 1

e−(ηi−1)b − qe−ηib, (38)

for i = 1, . . . ,m. The continuity of Vb(·) at b gives

m+1∑
j=1

ωje
βjb = eb − q. (39)

The solution of these m+ 1 equations can be summarized as follows.

Lemma 4.2. The solution of the system of m+ 1 linear equations
m+1∑
j=1

ωj
ηi

ηi−βj e
−(ηi−βj)b = ηi

ηi−1
e−(ηi−1)b − qe−ηib for i = 1, . . . ,m

m+1∑
j=1

ωje
βjb = eb − q

,

(40)
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is given by

ωj =

m+1∑
i=1

(
Ri

m+1∏
k=1

(ηi − βk)
m+1∏
l=1,l 6=i

βj−ηl
ηi−ηl

)

βjeβjb
m+1∏

k=1,k 6=j
(βj − βk)

, j = 1, 2, . . . ,m+ 1, (41)

where Ri = eb

ηi−1
for i = 1, . . . ,m and Rm+1 = q − eb.

Proof. Take ω̃j = ωje
βjb for j = 1, . . . ,m + 1, ηm+1 = 0, Ri = eb

ηi−1
for i =

1, . . . ,m and Rm+1 = q − eb. The linear system becomes

m+1∑
j=1

ω̃j
βj

ηi − βj
= Ri for i = 1, . . . ,m+ 1. (42)

Using a partial fraction technique similar to that in Chen et al. (2007), we have

m+1∑
j=1

Djβj
x− βj

=
m+1∑
i=1

Ri

m+1∏
k=1

ηi − βk
x− βk

m+1∏
l=1,l 6=i

x− ηl
ηi − ηl

, (43)

where Dj , j = 1, . . . ,m+ 1 are the partial fraction coefficients. Multiplying (43)
by (x− βk) on both sides and setting x = βk yields

Dkβk =

m+1∑
i=1

(
Ri

m+1∏
j=1

(ηi − βj)
m+1∏
l=1,l 6=i

βk−ηl
ηi−ηl

)
m+1∏

j=1,j 6=k
(βk − βj)

. (44)

When x = ηi in (43), we have

m+1∑
j=1

Djβj
ηi − βj

= Ri

m+1∏
k=1

ηi − βk
ηi − βk

m+1∏
l=1,l 6=i

ηi − ηl
ηi − ηl

= Ri.

Hence, ω̃j = Dj , j = 1, . . . ,m+ 1, and the result follows.

After obtaining the coefficients in (36), the remaining task is to determine the
optimal exercise boundary b∗ that maximizes the candidate solution Vb(x). The
following identity is useful for that purpose.
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Lemma 4.3. If {βk}m+1
k=1 and {ηi}m+1

i=1 are all distinct, then

m+1∏
k=1,k 6=j

(βk − 1) =
m+1∑
k=1

m+1∏
k=1,k 6=j

(βk − ηi)
m+1∏
l=1,l 6=i

(
ηl − 1

ηl − ηi

)
. (45)

Proof. Consider the following polynomial.

Pj(x) =
m+1∏

k=1,k 6=j

(βk − 1− x) for j = 1, . . . ,m+ 1, (46)

which are of degree m. It is clear that

Pj(ηi − 1) =
m+1∏

k=1,k 6=j

(βk − ηi) . (47)

By Lagrange interpolation,

Lj(x) =
m+1∑
i=1

Pj(ηi − 1)
m+1∏
l=1,l 6=i

(
ηl − 1− x
ηl − ηi

)

=
m+1∑
i=1

m+1∏
k=1,k 6=j

(βk − ηi)
m+1∏
l=1,l 6=i

(
ηl − 1− x
ηl − ηi

)
(48)

is a polynomial of degree m passing through all points in the set

{(ηi − 1, Pj(ηi − 1))}m+1
i=1 .

As Pj(x) is a polynomial of degree m, and it matches the value of Lj(x) at m+ 1
points, we have

Pj(x) = Lj(x) ∀x ∈ R.
The result follows by setting x = 0.

Proposition 4.1. Consider the stock loan valuation problem (10) with the under-
lying stock price process of (7) and (8), in which T+ and T− are defined as in
(34). If G′(1) < 0, then the stock loan pricing formula is given by (36) in which
1 < β1 < . . . < βm+1 are distinct roots of the C-L equation (16), the coefficients
{ω1, . . . , ωm+1} are obtained from Lemma 4.2, and the optimal exercise boundary
is given by

b∗ = ln

(
q

m+1∏
k=1

βk
βk − 1

m∏
l=1

ηl − 1

ηl

)
. (49)
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Proof. By Proposition 3.1, the stock loan pricing formula takes the form of (36)
once βj , j = 1, . . . ,m + 1, are distinct roots of the C-L equation (16) over the
interval (1,∞), which is confirmed by Lemma 4.1. Lemma 4.2 then provides
explicit expressions for the coefficients ωj , j = 1, . . . ,m+ 1, in (36).

The remaining task is to determine the b∗ that maximizes the value function
Vb(x) in (36). It suffices for us to maximize the function on the interval (−∞, x).
Consider

d

db
Vb(x) =

m+1∑
j=1

eβj(x−b)
(
d

db
ω̃j − ω̃jβj

)
,

where ω̃j = ωje
βjb. Simple algebra shows that

d

db
ω̃j − ω̃jβj =

(1− βj) eb
[
m∑
j=1

1
ηi−1

m+1∏
k=1

(ηi − βk)
m+1∏
l=1,l 6=i

βj−ηl
ηi−ηl

+
m+1∏
k=1

βk
m∏
l=1

βj−ηl
ηl

]

βj
m+1∏

k=1,k 6=j
(βj − βk)

+

q
m+1∏
k=1

βk
m∏
l=1

βj−ηl
ηl

m+1∏
k=1,k 6=j

(βj − βk)
.

Hence, d
db
ω̃j − ω̃jβj = 0 if and only if

eb

q
=

βj
βj − 1

m+1∏
k=1

βk
m∏
l=1

βj−ηl
ηl

m∑
j=1

1
ηi−1

m+1∏
k=1

(ηi − βk)
m+1∏
l=1,l 6=i

βj−ηl
ηi−ηl

+
m+1∏
k=1

βk
m∏
l=1

βj−ηl
ηl

=
1

βj − 1

m+1∏
k=1

βk
m∏
l=1

ηl−1
ηl

m+1∑
j=1

m+1∏
k=1,k 6=j

(βk − ηi)
m+1∏
l=1,l 6=i

(
ηl−1
ηl−ηi

)
=

m+1∏
k=1

βk
βk − 1

m∏
l=1

ηl − 1

ηl
,

where the last equality is an application of Lemma 4.3. Hence, the result follows.
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4.2. Phase-type jumps
We are now ready to extend the previous results to the case of phase-type

Lévy models. Suppose that T+ and T− are symmetric (and hence diagonalizable)
matrices that have distinct eigenvalues. Thus, there exist orthogonal matrices Q+

and Q− such that

T+ = (Q+)
T

Λ+Q+ and T− = (Q−)
T

Λ−Q− , (50)

where

Λ+ =

 −η1 · · · 0
... . . . ...
0 · · · −ηm

 , Λ− =

 −θ1 · · · 0
... . . . ...
0 · · · −θn

 .

The following characterizes the roots of the C-L equation (16) corresponding to
the stock price process of (7) and (8) using the matrices in (50).

Theorem 4.1. Suppose that the Lévy exponent G(β) in (16) uses T+ and T− in
(50). If G′(1) < 0, then the C-L equation G(β) = r̃ has exactly m+ 1 roots in the
complex domain D+ = {z ∈ C|Re(z) > 1} and exactly n roots in the complex
domain D− =

{
z ∈ C|Re(z) < max

i
{−θi}

}
.

Proof. Consider the following functions.

Let f0(z) = µ̃z + σ2

2
z2 + λp

(
α+ (−zI−Λ+)

−1
(−Λ+)1− 1

)
+λ(1− p)

(
α− (−zI−Λ−)

−1
(−Λ−)1− 1

)
− r̃,

f1(z) = µ̃z + σ2

2
z2 + λp

(
α+ (Q+)

T
(−zI−Λ+)

−1
(−Λ+)Q+1− 1

)
+λ(1− p)

(
α− (Q−)

T
(−zI−Λ−)

−1
(−Λ−)Q−1− 1

)
− r̃,

ft(z) = [f0(z)](1−t) [f1(z)]t for t ∈ (0, 1).

Thus, ft(z) has m poles η1, . . . , ηm in D+ for all t ∈ [0, 1]. From the hyperexpo-
nential case (Proposition 4.1), we know that f0(t) has m+ 1 zeros in D+.

We construct a boundary strip C+ of D+ such that ft(z) has no zero on it. As
|ft(z)| → ∞ as |z| → ∞ for t = 0, 1, there exists R ∈ R such that all roots of
ft(z) = 0, t ∈ (0, 1) are in the region

DR = {z ∈ C : Re(z) ≥ 0, |z| ≤ R} . (51)
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Alternatively, as G′(1) < 0, there exists κ1 ∈ R, κ1 > 1 (in fact, we can set κ1

arbitrarily close to 1), such that ft(κ1) = Re(ft(κ1)) < 0. For t = 0, 1, ν ∈ R,

eRe(ft(κ1+iν)) =
∣∣eft(κ1+iν)

∣∣
=

∣∣E (e(κ1+iν)X1−r̃
)∣∣

≤ E
(
e(κ1)X1−r̃

)
= eRe(ft(κ1))

< 1.

Hence, we have Re(ft(κ1 + iν)) < 0 ∀ν ∈ R, which gives the boundary strip

C+ = {z ∈ C : |z| = R, Re(z) ≥ κ1}∪{z ∈ C : Re(z) = κ1, −R ≤ Im(z) ≤ R} .
By the continuity of ft(z) and the argument principle, we deduce that

nt =
1

2πi

∮
C+

f ′t(z)

ft(z)
dz (52)

is integer-valued and continuous over t ∈ [0, 1]. Hence, n0 = n1, i.e., f1(z) has
m+ 1 zeros in D+. This completes the proof of the first part of the statement.

To show the second part of the statement, we repeat the foregoing arguments
with the boundary strip,

C− = {z ∈ C : |z| = R, Re(z) ≤ κ2}∪{z ∈ C : Re(z) = κ2, −R ≤ Im(z) ≤ R} ,
where κ2 ∈ R and κ2 < max

i
{−θi} is chosen arbitrarily close to max

i
{−θi}.

Proposition 4.2. Consider the stock loan valuation problem (10) with the under-
lying stock price process of (7) and (8), in which T+ and T− are defined as in
(50). If G′(1) < 0 and the m + 1 roots of the C-L equation (16) in D+ are all
distinct, then the stock loan pricing formula is given by

V (x) =


m+1∑
j=1

ωje
βjx x < b∗

ex − q x ≥ b∗
, (53)

where {β1, . . . , βm+1} are the m + 1 roots in D+ as shown by Theorem 4.1,
{ω1, . . . , ωm+1} are given by

ωj =

m+1∑
i=1

(
Ri

m+1∏
k=1

(ηi − βk)
m+1∏
l=1,l 6=i

βj−ηl
ηi−ηl

)

βjeβjb
m+1∏

k=1,k 6=j
(βj − βk)

, (54)
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and the optimal exercise boundary is

b∗ = ln

(
q
m+1∏
k=1

βk
βk − 1

m∏
l=1

ηl − 1

ηl

)
. (55)

Proof. By Proposition 3.1, for any given b ∈ R, if there are no multiple roots in
D+, then the value function is of the form

Vb(x) =


m+1∑
j=1

ωje
βjx x < b

ex − q x ≥ b

. (56)

Using this solution form, we compute the following.

LVb(x)− r̃Vb(x) = λpα+
[(

Q+
)T
eΛ+(b−x)

((
−Λ+ − I

)−1
ebI + qΛ+−1

−
∑m+1

j=1
ωj
(
−Λ+ − βjI

)−1
eβjbI

) (
−Λ+

)
Q+
]

1,

which is equal to 0 for x ∈ (−∞, b). Hence, we obtain a system of linear equa-
tions,

m+1∑
j=1

ωj
ηi

ηi−βj e
−(ηi−βj)b = ηi

ηi−1
e−(ηi−1)b − qe−ηib for i = 1, . . . ,m

m+1∑
j=1

ωje
βjb = eb − q

,

that takes exactly the same form as the linear system (40) in the hyperexponential
case. Therefore, the coefficients are those given in (54), and the optimal exercise
boundary is given by (55).

4.3. The case of G′(1) ≥ 0

The foregoing analysis is based on the assumption that G′(1) < 0. We now
investigate the stock loan problem when G′(1) ≥ 0. We first consider the hyper-
exponential jump diffusion model.

Proposition 4.3. Consider the stock price process of (7) and (8), which uses T+

and T− as defined in (34). If G′(1) ≥ 0, then V (x) = ex.
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Proof. Using a similar technique to the proof of Lemma 4.1, the C-L equation
G(β) = r̃ has exactly n distinct negative roots, two positive roots in the interval
(0, 1] (at least one of which is 1) and m distinct positive roots in the interval
(η1,∞).

When G′(1) = 0, there is a double root at 1. Thus, we use the stock loan
formula with G′(1) < 0 and let β1 go to 1. This implies that b∗ → ∞, ωj →
0 for j 6= 1 and

ω1 →

m+1∑
k=1

m+1∏
k=2

(βk − ηi)
m+1∏
l=1,l 6=i

(
ηl−1
ηl−ηi

)
m+1∏
k=2

(βk − 1)

= 1,

where the last equality is a result of Lemma 4.3 when j = 1. Hence, V (x) = ex.
Consider the case of G′(1) > 0. As the term ωje

βjx for 0 < βj < 1 is rejected
by convexity, the solution can be written as

V (x) =


m+1∑
j=1

ωje
βjx x < b

ex − q x ≥ b

,

where β1 = 1 < β2 < . . . < βm+1. By Theorem 3.2, this value function satisfies
the OIDE specified in that theorem. Substituting the solution form into the OIDE
yields a system of linear equations the same as that in (40). The solution to that
liner system is ω1 = 1, and ωj = 0 for j = 2, . . . ,m + 1, which implies b∗ =∞.
Hence, V (x) = ex.

This result for hyperexponential jump diffusion can be extended to cover the
case of phase-type Lévy models with T+ and T− as defined in (50).

Proposition 4.4. Consider the stock price process of (7) and (8), which uses T+

and T− as defined in (50). If G′(1) ≥ 0 and there are m+ 1 distinct roots in D+,
then V (x) = ex.

Proof. By repeating the argument of Theorem 4.1, it is easy to prove the follow-
ing. If G′(1) ≥ 0, then the C-L equation G(β) = r̃ in (16) has exactly n roots
in the complex domain D− =

{
z ∈ C|Re(z) < max

i
{−θi}

}
, and the number of

roots in the domain D+ = {z ∈ C|Re(z) ≥ 1} is given by{
m+ 2 when G′(1) = 0
m+ 1 when G′(1) > 0

.
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The result follows from using Proposition 4.3 because b∗, which takes the
same form as that in Proposition 4.3, tends to infinity.

We conclude this section by summarizing the procedures of computing the
stock loan value. For any stock price process in the form of (7) and (8) in which
T+ and T− are symmetric, we diagonalize T+ and T− in the form of (50) and
constitute the C-L equation (16). If G′(1) ≥ 0, then the stock loan value is given
by V (x) = ex. Otherwise, we compute the roots of the C-L equation using the
root finding procedures of a high degree polynomial. Then the solution can be
computed as in (53), (54) and (55).

5. Conclusion

This paper reports a full investigation into the stock loan valuation problem
using a fairly general class of phase-type Lévy models. As phase-type Lévy mod-
els, even though hyperexponential jump diffusion models alone, can approximate
arbitrary Lévy models arbitrarily close as shown by Asmussen et al. (2007), the
present paper provides important insights into stock loan valuation when the un-
derlying stock price follows a general Lévy model. We clearly clarify the situ-
ations that banks will have no intention of offering a security lending service in
a phase-type Lévy economy, and the appropriate service charge if business does
occur. The variational inequality approach and the transformation connecting hy-
perexponential jump diffusion to a fairly general class of phase-type Lévy models
may have potential alternative applications related to phase-type Lévy models.
An interesting extension to the present work is to adopt the stochastic interest rate
model under the framework of Wong and Zhao (2011).
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