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Estimating default barriers from market
information

Abstract

Brockman and Turtle (2003) develop a barrier option framework to show
that default barriers are significantly positive. Most implied barriers are
typically larger than the book value of corporate liabilities. We show theo-
retically and empirically that this result is biased due to the approximation of
the market value of corporate assets by the sum of the market value of equity
and the book value of liabilities. This approximation leads to a significant
overestimation of the default barrier. To get rid of this bias, we propose a
maximum likelihood (ML) estimation approach to estimate the asset values,
asset volatilities, and default barriers. The proposed framework is applied to
empirically examine the default barriers of a large sample of industrial firms.
This paper documents that default barriers are positive but not very signifi-
cant. In our sample, most of the estimated barriers are lower than the book
values of corporate liabilities. In addition to the problem with the default
barriers, we find significant biases on the estimation of asset value and asset
volatility by Brockman and Turtle (2003).

JEL classification: G12; G33

Keywords: Default barrier; Bankruptcy prediction; Maximum likelihood es-
timation.
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1 Introduction

The option-theoretic approach to corporate security valuation originated
from the seminal works of Black and Scholes (1973) and Merton (1973, 1974).
Based on this framework, equity value is viewed as a standard call (SC) option
of corporate assets with a strike price that is equal to the promised payment
of corporate liabilities. However, the conventional view of equity value as an
SC option is inadequate to describe the consequences of bankruptcy at all
times before an option’s maturity. The work of Black and Cox (1976) sup-
plements the Black-Scholes-Merton (BSM) framework by imposing a failure
barrier (default barrier) to trigger bankruptcy before the maturity. When the
underlying asset price breaches the barrier, corporate equity can be knocked
out by bankruptcy so that bond holders are able to receive the remaining
value of the firm before it deteriorates further. Black and Cox (1976) stress
that the default barrier is relevant to bond protective covenants. As a result,
corporate equity is modeled as a down-and-out call (DOC) option, and cor-
porate debt is valued as a portfolio of default-free debt, a short put option,
and a long down-and-in call.

These insights have had a profound impact both on financial theory and
practice. With the concept of the default barrier, theoretical work has been
carried out on the debt valuation and optimal capital structure (see, for
example, Longstaff and Schwartz, 1995; Leland and Toft, 1996; Brisys and
de Varenne, 1997). The option-theoretic approach also facilitates parameter
estimation and empirical analysis for corporate bond pricing models and
credit risk models. For instance, Moody’s KMV Corporation estimates the
value of the assets and volatilities of firms using a barrier option framework
in which the default barrier is set as the default point, which is short-term
debt plus half of the long-term debt (Crosbe and Bohn, 1993). Eom, Helwege
and Huang (2003) test various structural models of corporate bond pricing
by specifying the default barriers to be the book value of corporate liabilities.

Instead of specifying default barriers subjectively, we propose a statisti-
cal framework to estimate their value. Our approach greatly improves the
barrier option framework of Brockman and Turtle (2003). In their paper,
the market value of corporate assets is approximated by the market value of
equity plus the book value of corporate liabilities (hereafter the proxy). After
substituting the proxy into the DOC option pricing formula, a default bar-
rier is extracted by setting the option price to be equal to the market value
of equity. They then set up a hypothesis test to show that barriers, that

3



are obtained in this way are statistically significant for a large cross-section
of industrial firms. Their robustness tests reveal that “implied” barriers re-
main significant over a wide range of input parameters. However, we discover
that using the proxy effectively overstates the default barrier. Therefore, the
Brockman and Turtle (2003) framework indirectly assigns positive barriers
to each firm before the statistical tests. Any results that are obtained in this
way are unable to reflect the actual information that is contained in market
variables.

This paper applies economic theories to uncover the implications of using
the proxy. It is interesting and important in its own right because there has
been much academic research that applies the same approximation, some
examples being the work of Ogden (1987), Jung, Kim and Stulz (1996), Bar-
clay and Smith (1997a, b), Lyden and Saraniti (2000), and Eom, Helwege
and Huang (2003). We are concerned about the possible errors and presump-
tions that are behind the proxy. Using the properties of the SC and DOC
options, we prove that implied barriers are larger than the book value of
corporate liabilities if the proxy is adopted. This claim is true irrespective
of the empirical data that are observed. The consequence is that unbiased
empirical analysis for default barriers should not use the proxy.

The significant bias that is introduced by the proxy motivates us to inves-
tigate an alternative framework for default barrier estimation. We consider
a maximum likelihood (ML) estimation, as it is an asymptotically unbiased
approach. With a large enough sample, maximum likelihood estimators are
close to true parameter values. Like Black and Cox (1976) and Brockman
and Turtle (2003), we view the corporate equity as a DOC option of corpo-
rate assets, but instead of using the proxy, we construct an ML estimation
of the default barrier, the underlying asset values, and the asset volatility.
Previous work on ML estimation concentrates on spot prices and volatility
(see, for example, Duan, 1994; Ericsson and Reneby, 2002), but our approach
extends it to include the default barrier estimate. Because of the asymptotic
unbias property of the ML estimation, our estimated parameters serve as a
benchmark to assess the quality of the Brockman and Turtle (2003) approach.

This paper contributes to the literature by theoretically deriving the im-
plications of using the proxy, by empirically examining the significance of
default barriers, and by proposing a statistical framework to capture the ef-
fect of barriers on corporate claims. We estimate the default barriers, the
market values of the assets of firms, and asset volatilities for a sample of
13,317 firm-years. We find that most estimated barriers are positive, but are
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less than the book value of corporate liabilities. Moreover, the default barri-
ers that are implied by the market are typically high for the year of financial
distress. We also highlight other problems of the framework of Brockman and
Turtle (2003) besides the problem of the bias in default barrier estimates. We
find that the firm asset values and asset volatilities that are obtained by this
framework contain tremendous bias.

The rest of the paper is organized as follows. Section 2 derives the im-
plications of using the proxy using financial arguments. Section 3 develops
an ML estimation of the default barrier. We verify the proposed framework
by simulation. Empirical results are presented in Section 4, and conclusive
remarks are made in the final section.

2 Implications of the proxy

A typical example of a default barrier estimation that uses the proxy is the re-
cent paper of Brockman and Turtle (2003). Their paper starts by viewing the
market value of equity, VE, as a DOC option of the market value of corporate
assets V with an exercise price that is equal to the future promised payment
(all non-equity liabilities) X with provision at a constant barrier level H.
The market value of equity and the future promised payment are obtained
from market information and the financial reports of firms, respectively. As
the market value of corporate assets is not observable, it is approximated
by the proxy (Ṽ = VE + X). The asset volatility is measured as the annu-
alized standard deviation of the asset return. By assuming zero rebates for
all firms, barriers are calibrated by setting the DOC option formula to the
market value of equity. As the DOC price collapses to the SC price when
the barrier level is set to zero, their paper claims that the positive barrier
hypothesis is testable. Their statistical tests report that implied barriers are
significantly positive with over 99% confidence.

Looking at their results carefully, we discover a very interesting phe-
nomenon. In their sample, most (if not all) of the implied barriers H are
greater than the future promised payment X. This can be easily deduced
from Panel D of Table 2 in their paper, in which the averaged barrier-to-asset
ratios are greater than the upper bounds of liability-to-asset ratios. In this
section, we show that all of the findings that are mentioned here and in the
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last paragraph are consequences of using the proxy.
To begin the analysis, we deduce an implication by using the proxy Ṽ

under the SC framework for security valuation. By putting the equity value
as the subject, the definition of the proxy is expressed as

VE = Ṽ −X,

where the right-hand side is nothing but the intrinsic value of an SC option
written on the proxy Ṽ with a strike price X. Using the no arbitrage pricing
principle, standard textbooks on options, such as that of Hull (2001) and
others, give a model-independent result that

Ṽ −X < Ṽ −Xe−rT ≤ SC(Ṽ , X),

where SC(Ṽ , X) denotes the pricing formula for SC options. As the market
value of equity is strictly less than the SC price, this implies that the SC
framework will automatically be rejected whenever the proxy is adopted.

In fact, the proxy forces implied barriers to be positive under the DOC
approach of Brockman and Turtle (2003). All other things being fixed, the
DOC option price is a decreasing function of the barrier level H. Specifically,
the DOC price decreases from the SC price to the rebate value R by increasing
the barrier level H from 0 to the asset value. With a rebate that is less than
the option’s intrinsic value, a positive barrier must be chosen to make the
DOC price equal to its intrinsic value. This model-independent property
of the DOC options implies that a positive barrier will be generated if the
proxy is used. We stress that this implication is true for arbitrary sets of
input parameters. Some examples of input parameters include industrial
sector, the value of the firm’s liabilities, asset volatility, option maturity, and
rebate level. This explains why the hypothesis tests and robustness tests of
Brockman and Turtle (2003) work extra ordinarily well. Firms are presumed
to have positive barriers under the their framework.

However, employing the proxy is equivalent to presuming that the default
barrier is greater than the future promised payment of liabilities. To highlight
this, we denote DOC(V, X,H) as the current price for a DOC option on V
with a strike price of X and a barrier of H. By the no arbitrage pricing
principle, we can show that

DOC(V, X,X) > V −X.

If this is not the case (that is, if V − DOC(V, X,X) − X ≥ 0), then an
investor can make an arbitrage profit by selling the asset at V to purchase
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the DOC option. The remaining cash is put into a bank account. Profits can
then be made by taking two different actions that correspond to two possible
scenarios.

1. The asset price V does not breach the barrier level X before maturity.
On the maturity day (T ), the investor will exercise the option to pur-
chase the asset by a value of X so that the investor’s short position in
the asset will be canceled. An arbitrage profit of

[V −DOC(V, X,X)] erT −X

is then made at time T .

2. If the asset value breaches the barrier level X at time τ < T , then the
investor will receive a rebate of R. The investor will purchase the asset
from the market right away with an amount of X to cancel the short
position in the asset. An arbitrage profit of

[V −DOC(V, X,X)] erτ −X + R

is then made at time τ .

As a result, the no arbitrage price of the DOC options should satisfy the
preceding inequality. This inequality implies that a DOC option price equals
its intrinsic value only when the barrier level H is strictly greater than the
strike X. Mathematically, we write

V −X = DOC(V, X,H) ⇒ DOC(V, X,X) > DOC(V, X,H)
⇒ H > X. (1)

The last line of (1) is true, because the DOC pricing formula is decreasing
with the barrier level.

Unfortunately, Brockman and Turtle (2003) use the DOC option pricing
formula and the proxy at the same time. This specification is equivalent to
setting the DOC option price to be equal to its intrinsic value. According to
the last implication (1), all of the “implied barriers” must exceed the book
value of corporate liabilities. More importantly, our argument points out a
fact that the empirical findings of Brockman and Turtle (2003) are seriously
biased toward positive default barriers.
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To ensure that we understand the Brockman-Turtle framework correctly,
a numerical example is constructed as a verification. We solve H from the
equation

V −X = DOC(V, X,H) (2)

with various input parameters, where the mathematical formula for the DOC
option is presented in (4) of Section 3. We tabulate our results together
with that of the robustness tests of Brockman and Turtle (2003) in Table 1
for comparative purposes. To match their scale, we use a market value of
corporate assets of 1.0, a future promised payment of 0.45, a risk-free rate of
5%, and a base asset volatility of 25% in our computation. It is important
to note that our computation involves no empirical data.

Table 1: Solving (2) vs. Brockman and Turtle (BT, 2003)

Panel A: barrier estimates for various option lives with fixed
volatility and zero rebate

3 Years 5 Years 10 Years 30 Years 100 Years
Solving (2) 0.6543 0.6623 0.6839 0.7208 0.7352
BT 0.6772 0.6802 0.6920 0.7137 0.7224

Panel B: barrier estimates for rebates of 0, 5, 10, 15, and 20%.
0 % 5 % 10 % 15 % 20 %

Solving (2) 0.6839 0.7067 0.7307 0.7560 0.7825
BT 0.6920 0.7123 0.7334 0.7553 0.7777

Panel C: barrier estimates for volatilities of 80 , 90, 100, 110,
and 120% of the base case volatility

80 % 90 % 100 % 110 % 120 %
Solving (2) 0.7377 0.7091 0.6839 0.6619 0.6425
BT 0.6991 0.6954 0.6920 0.6884 0.6844

The results in Panel A and Panel B of Table 1 show that the barrier levels
that are obtained by solving (2) are very close to the averaged normalized
barrier levels that are obtained by Brockman and Turtle (2003) in terms of
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both the order of magnitude and the increasing trend. Panel C of Table 1
reveals that the decreasing trends of the barrier values by the two methods
agree with each other. In Panel C, the barriers that are implied by the two
methods have slightly different values, because Brockman and Turtle (2003)
use the volatility of the proxy, whereas we use a fixed value of 25%. Moreover,
all of the “implied barriers” are greater than the liability level of 0.45.

3 The proposed framework

In this section, we propose a statistical framework to estimate default barriers
and then verify our approach with a simulation. As the proxy cannot be used,
the number of parameters increases from 1, that is the barrier level only, to
4, which includes the default barrier, asset value, asset volatility, and drift
of the business at each time point. Therefore, the new framework should be
able to manage more parameters and maintain the quality of estimation.

The proposed framework starts by viewing the equity value as a DOC
option of the corporate assets. We make the usual assumption that the
underlying asset price evolves as a geometric Brownian motion. Specifically,
the process for the log-asset-value, wt = ln Vt, takes the form

dwt =
(
µ− σ2/2

)
dt + σdZt, (3)

where Vt is the market value of the firm’s assets at time t, σ is the asset
value volatility, µ is the drift of the business, and Zt is a Wiener process.
By risk-neutral valuation, equation (3) enables us to derive the closed form
solution for the DOC options. In this case, the market value of equity VE is
given as follows:

VE = DOC(V, X,H)

= V N(a)−Xe−rT N
(
a− σ

√
T

)
−V (H/V )2ηN(b) + Xe−rT (H/V )2η−2N

(
b− σ

√
T

)
(4)

R(H/V )2η−1N(c) + R(V/H)N
(
c− 2ησ

√
T

)
,

where V is the market value of the firm’s assets, X is the future promised
payment, H is the barrier level, σ is the asset value volatility, r is the risk-free
interest rate, T is the time to maturity of the option, R is the rebate that is
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paid to the firm’s owners if the asset value breaches the barrier, N(·) is the
cumulative distribution function for a standard normal random variable, and

a =


ln(V/X)+(r+σ2/2)T

σ
√

T
, for X ≥ H,

ln(V/H)+(r+σ2/2)T

σ
√

T
, for X < H,

b =


ln(H2/V X)+(r+σ2/2)T

σ
√

T
, for X ≥ H,

ln(H/V )+(r+σ2/2)T

σ
√

T
, for X < H,

c =
ln(H/V ) + (r + σ2/2)T

σ
√

T
and η =

r

σ2
+

1

2
. (5)

Notice that the SC option framework is incorporated by setting H to zero.
This idea comes from Brockman and Turtle (2003).

Given a time series of the market value of equities, say {VE(ti)|i =
1, 2, · · · , n}, we estimate the drift µ, volatility σ, barrier level H, and a series
of market values of corporate assets {V (ti)|i = 1, 2, · · · , n} by means of a
maximum likelihood (ML) estimation. This idea was originated by Duan
(1994) in the context of estimating the BSM model. Recently, Ericsson and
Reneby (2002) have compared the performances of the ML estimation and
the variance-restriction (VR) method by Ronn and Verma (1986). They find
that the accuracy of the ML approach is superior to the VR approach. Here,
we extend Duan’s framework to estimate the default barriers. To our un-
derstanding, our paper is the first work to estimate default barriers by a
statistical method.

We denote by f(VE(ti)|VE(ti−1), θ) the probability density function for
the equity value at time ti that is conditional on the equity value at time ti−1

and a parameter vector θ. The ML approach estimates the value of θ such
that the log-likelihood function

L(θ) =
n∑

i=2

ln f
(
V i

E|V i−1
E , θ

)
, V i

E ≡ VE(ti)

is maximized. For our case, θ = (µ, σ,H). If the density function can be
expressed in closed form, then the maximization problem becomes tractable.

Fortunately, the conditional density function f(·|·) for the equity value
can be derived from the DOC option pricing formula of (4). We denote
g(wi|wi−1, θ) as the density function of wi that is conditional on the values
of wi−1 and θ, where wi is the log-asset-value at time ti. With the help of
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(4), a standard change of variable technique is applied to obtain

f(V i
E|V i−1

E , θ) =

g(wi|wi−1, θ)×
∣∣∣∣∣∂VE

∂w

∣∣∣∣∣
−1


wi=w(V i

E ,ti;θ)

, (6)

where θ ⊂ θ is the subset of the parameter vector, which is necessary for
pricing the equity values. In fact, wi is obtained inversely from (4) with the
values of V i

E and θ = (σ, H) given. This is because the DOC pricing formula
does not involve the drift µ. The partial derivative that appeares in (6) can
be implemented through the delta of the DOC options

∂VE

∂w

∣∣∣∣∣
w=wi

= Vi
∂VE

∂V

∣∣∣∣∣
V =Vi

= Vi∆(Vi, θ).

The conditional density function, g(·|·), for the random variable wi should
reflect an absorbing boundary condition on wi = ln H such that the asset
values will not fall under the barrier between any two successive time points.
In other words, we are considering survival firms. This density function is
available in the literature, see Rubinstein and Reiner (1991). Specifically,

g(wi|wi−1; θ) = ϕ(wi − wi−1)− e2η(h−wi−1)ϕ(wi + wi−1 − 2h), (7)

where

δti = ti − ti−1, h = ln(H),

ϕ(x) =
1

σ
√

2πδti
exp

{
− [x− (µ− σ2/2)δti]

2

2σ2δti

}
, (8)

and η is defined in (5). It is important to note that the function g(·|·) takes
the form (7) if the underlying asset value is larger than the barrier, otherwise,
its value is set to zero. Our approach can be further improved by taking into
account the survivorship consideration (see Duan et al. (2003)). However,
the improvement is mainly related to the drift, and does not affect the other
parameters. As our basic concern is the default barrier, we keep this present
setting unchanged to avoid further complication.

Let us summarize the whole estimation procedure. After specifying the
log-likelihood function as

L(θ) =
n∑

i=2

[ln g(wi|wi−1)− ln [Vi∆(Vi; θ)]]wi=w(V i
E ,ti;θ)

, (9)
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the drift µ, the volatility σ, and the barrier H are estimated by maximizing
equation (9). Finally, a time series of asset values is obtained from the inverse
of the equity pricing function

ŵi = DOC−1
(
V i

E, ti; σ̂, Ĥ
)
.

3.1 Simulation checks

A Monte Carlo simulation is designed to check the reliability of our ML
estimation. Through simulation studies, we are able to obtain some idea of
the performance, in terms of strengths and weaknesses, of our framework. We
also compare the proposed ML estimation with the approach of Brockman
and Turtle (2003). As we choose the parameter values, we can check the
accuracy of the two approaches.

The simulation generates 1,000 realizations of asset values in accordance
with the dynamics of (3). Each realization comprises 2,600 equally time-
spaced asset values, that replicate 1-year intraday observations. In other
words, we assume that there are 10 observations per day and 260 trading
days per year. We take the following parameter values: r = 0.05, T = 10, µ =
0.1, σ = 0.3, R = 0, X = 1.0, and V (0) = 1.5. For each generated realization,
three sets of equity values are produced via the DOC option pricing formula
for H = 0.8, 1.0, and 1.2. To obtain positive equity values at each time point,
we regenerate the realization that contains an asset value that is less than
the barrier. Ultimately, we obtain 1,000 time series of equities for each value
of H.

Because we only obtain daily closing prices in our empirical study, we
sample 260 equally time-spaced points from each generated equity realization.
This allows us to capture the effect of sampling from discrete time points.
By viewing these 260 × 1,000 equity values as real data that are observed
in the market, we perform our ML estimation and the Brockman and Turtle
(2003) estimation. The results are summarized in Table 2.

Panel A of Table 2 reports the barrier estimates. It shows that the accu-
racy of the H estimates is high regardless of whether the true value of the
default barrier is less than, equal to, or greater than the liability level of 1.0.
The averaged barrier estimates are 0.7857, 1.0061, and 1.2036 for the true
values of 0.8, 1 and 1.2, respectively. All of the averaged values are close
to the corresponding median values. The standard deviation decreases with
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the true barrier level, and therefore the performance of the barrier estima-
tion improves for higher values of default barriers. Brockman and Turtle
(2003) claim that default barriers are significantly positive. If this is really
the case, then our approach captures default barriers even better. When we
look at the results that are obtained from the Brockman and Turtle (2003)
approach, we can see that the implied barriers are significantly higher than
the corresponding true values. For a true barrier of 0.8, the proxy approach
gives an estimate of 1.4577, which has a percentage error of over 80%. The
upward bias that is inherent in the proxy approach is an obvious conclusion
that can be drawn from these figures.

Table 2: Performamce of the estimations

Panel A: barrier estimates (true value = barrier level)
ML estimation BT approach

barrier level: 0.8 1.0 1.2 0.8 1.0 1.2
mean: 0.7857 1.0061 1.2036 1.4557 1.3402 1.2114
std: 0.3551 0.2610 0.2063 0.0836 0.0918 0.0893
median 0.8247 1.0245 1.2236 1.4439 1.3274 1.1972

Panel B: volatility estimates (true value = 0.3)
barrier level: 0.8 1.0 1.2 0.8 1.0 1.2
mean: 0.2949 0.3003 0.3013 0.2586 0.3113 0.4051
std: 0.0560 0.0707 0.0751 0.0129 0.0199 0.0428
median 0.2937 0.2943 0.2936 0.2582 0.3102 0.4034

Panel C: drift estimate (true value = 0.1)
barrier level: 0.8 1.0 1.2 0.8 1.0 1.2
mean: 0.3838 0.3810 0.3753 0.2242 0.2691 0.3538
std: 0.5260 0.5325 0.5328 0.1962 0.2211 0.2617
median 0.1605 0.1502 0.1419 0.2056 0.2551 0.3499

Panel D: Percentage error of asset values (true value = 0)
barrier level: 0.8 1.0 1.2 0.8 1.0 1.2
mean: 0.04729 0.05611 0.05314 0.2220 0.1465 0.0473
std: 0.03985 0.04999 0.04888 0.0202 0.0074 0.0163
median 0.03582 0.04429 0.04305 0.2232 0.1467 0.0456
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Panel B shows the performance of the volatility estimates. The maximum
likelihood estimators, in terms of both the means and the medians, are very
close to the true value of 0.3. Moreover, the standard derivation for each
volatility estimate is smaller than 0.08. The performance is good for all values
of default barriers. Although the bias in the volatility estimates of Brockman
and Turtle (2003) is less severe compared to the case of the default barriers,
the error is large enough to generate misleading messages in practice. When
the Brockman and Turtle (2003) approach roughly captures the barrier at
H = 1.2, it overestimates the volatility by over 33%.

Panel C shows that the drifts are overestimated in both approaches. This
is to be expected, as only survival firms are considered in this simulation.
Although this bias can be reduced, 1 the drift is often irrelevant in application.
For pricing credit derivatives or corporate bonds with structural models,
valuations are carried out in a risk-neutral world in which the drift has no
role in the pricing formulas. Moreover, this paper concentrates on the default
barrier estimates, and thus the errors in the estimation of the drift does not
affect our general discussion.

In Panel D, we calculate the percentage error of estimated asset values
relative to the true values using the following formula:

Percentage error
of firm asset values
in one simulation

=
1

260

260∑
i=1

∣∣∣∣∣∣V
i
true − V̂ i

V i
true

∣∣∣∣∣∣ , (10)

where V̂ i is the estimated firm value. The averaged percentage errors are
less than 6% for all cases using the ML approach, and the medians are even
smaller. Altogether, our simulation gives evidence that the proposed ML
framework renders a precise estimation of default barriers, firm asset value,
and asset volatility. With the Brockman and Turtle (2003) framework, the
firm values are wrongly estimated by 4.73% - 22.2% on average across differ-
ent cases. The estimation error increases when the barrier level decreases.

1Duan et al. (2004) have modified our framework to remove this bias. However, the

estimation quality of other parameters remains the same. The aim of their paper is to argue

that ML estimation is a more general approach than the EM algorithm that is employed

by the KMV. Our framework serves as a good example to strengthen their arguments.
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4 Estimation with empirical data

4.1 Description of the data

This section presents an empirical investigation over a large cross-section
of industrial firms. We collected data from Compustat and Datastream.
Attention is paid to industrial firms with SIC codes that are between 2,000
and 5,999. The sample covers a ten-year period of daily observations from
1993 to 2002. The whole data set consists of 13,317 firm-years, which provides
abundant data in various industrial sectors to perform the ML estimation.

Table 3 presents the basic statistics of our data. It can be seen that the
debt-to-equity ratio varies greatly across the different sectors, and ranges
from around 0.001 to over 5000. This implies that the sample for our empir-
ical analysis takes a large number of firms with various financial structures
into account. When all observations are pooled together, it is found that the
averaged face value of debts of a firm is about 2.6 times to its market equity
value. The annualized risk-free rate ranges from the lowest of 1.32% to the
highest of 5.98% in the period. The mean value is 4.3%.

<< Insert Table 3 about here >>

To estimate the default barrier H, the market value of assets (V ), and
the firm asset volatility (σ), the ML approach requires the market value of
equity (VE), the future promised payment (X), the risk-free interest rate (r)
and the time to maturity of the option (T ) as inputs. The equity values
are directly obtained from Compustat and Datastream. The data of X are
measured as the book value of assets minus the book value of equity, both of
which were downloaded from Compustat. We take the rate of return of one-
year US Treasury bills as the risk-free interest rate. The option’s maturity
is assumed to be 10 years, which has been used in many empirical studies,
such as that of Brockman and Turtle (2003). This allows us to make a fair
comparison.

We implement the estimation with the following technical details. The
time series of VE together with other values are substituted into the log-
likelihood function of (9). This is then maximized through the numerical
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scheme of Nelder-Mead (1965) that is a built-in function of the software
MATLAB. A convergence analysis for the scheme is reported in Lagarias et
al. (1998).

4.2 Empirical results

4.2.1 Barrier vs. debt

In Section 2, we show theoretically that the proxy approach of Brockman and
Turtle (2003) lead to barrier level (H) above the value of corporate liabilities
(X), and that their result is thus unable to reflect reality. Our empirical study
supports this claim, as we find that default barriers tend to be less than the
value of X. Table 4 reports the statistics of the barrier-to-debt ratio (H/X),
which allows us to compare the barriers with the value of liabilities directly.
We use percentiles to report the barrier-to-debt ratio, because the average
values can generate a distorted picture. In our sample, some typical firms
have a small value (close to zero) in their liabilities, see Table 3. In such a
situation, the computational error in the barrier estimates greatly affects the
accuracy of measuring the average values. If the debt level is close to zero,
then the estimated barrier is small, but it is possible for it to be larger than
the debt level due to the computational error. The resulting barrier-to-debt
ratio can be unreasonably large. When we measure the average values, the
number dominates the outcome by pulling up the mean value significantly.

<< Insert Table 4 almost here >>

Panel A of Table 4 shows the statistics across the whole sample. We
can see that over 25% of the sample has zero default barriers. This result is
significantly different from the finding of Brockman and Turtle (2003) of a
99% confidence that default barriers are positive and significantly different
from zero. The median value is 0.738, which indicates that the median firm
has a default barrier at around 74% of its liabilities. Interestingly, for a firm
with 50% long-term debt and 50% short-term debt, the default point, or the
specified default barrier, of KMV becomes 75% of the total debt which is
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close to the median barrier-to-debt ratio that is given by our sample. In fact,
55.7% of the whole sample has a ratio of less than 1. This suggests that the
default barrier of most firms is lower than their level of liabilities. However,
Brockman and Turtle (2003) implicitly show that default barriers are higher
than the total debt. We disaggregate the sample by years and by industrial
sectors to find other useful information.

Panel B presents the results by different years. The medians of the barrier-
to-debt ratios are consistently less than 1, except for the years 1998 and 2002.
It is interesting to recall that there are shocks on the major financial indices
in both years. We provide three possible explanations for this observation.
During the period of financial distress, investors overreact to all kinds of
risks, including the default risk, and thus price equities with a higher level
of default barriers. As our framework takes into account the market values
of equities, this effect is successfully captured. The second possible reason is
concerned with model risk. Jumps on equity values arrive more frequently
in years of financial distress to pull down stock prices. Our framework only
considers a continuous time model without jumps, and thus an unreasonable
decrease in equity value leads to the overestimation of the volatilities. A high
volatility generates a high equity value with the DOC option model. However,
the equity value is a known quantity, and thus a high barrier is implied to
balance off the effect. The third reason is a combination of the previous two
reasons, and therefore, future research should focus on the impact of jumps
on the default barrier estimation.

We look at the default barrier estimates across industrial sectors in Panel
C. Except for the chemicals sector and the miscellaneous manufacturing sec-
tor, the medians of the sectors are all less than 1. When we refer to Table 3,
the median of the debt-to-equity ratios of these two sectors are the smallest
two among all the industrial sectors. This observation suggests that the lower
the debt-to-equity ratio, the higher the barrier-to-debt ratio. A possible ex-
planation is that firms are subject to bankruptcy costs, which contribute to
the value of default barrier. When the debt value is typically low, we expect
to observe a barrier that is above the debt for a median firm in a sector.
However, the impact of bankruptcy costs on the default barrier is not an-
swered in this paper, and we leave it to future research to determine this
impact.
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4.2.2 Market value of corporate assets

In the simulation study, we show that the firm asset value and volatility
are estimated with a high degree of accuracy with our ML approach. This
enables us to examine the quality of the firm asset value estimation with the
proxy. To make this comparison, we use the following measurement:

Percentage difference of
firm asset values
for a firm year

=
1

Ny

Ny∑
i=1

V i
proxy − V i

ML

V i
ML

, (11)

where Ny is the number of trading days in a particular year, and V i
proxy and

V i
ML are, respectively, the firm value that is estimated by the proxy and the

ML estimation at time ti.
Table 5 shows the mean and standard deviation of the percentage error.

The mean value is 0.667, which shows that the proxy approach overestimates
the firm asset value by 66.7% on average. However, the large standard devi-
ation indicates that it is possible to have a case in which the proxy approach
underestimates the firm value. If we regard the ML estimation as a bench-
mark, as it is asymptotically unbiased, then the proxy approach is generally
very inaccurate. However, we caution that the proxy should be avoided in
an empirical study if the default barrier is considered in an empirical study.

Table 5: Percentage error in estimating firm values

mean standard deviation
Error of firm values 0.662 17.598

4.2.3 Volatility

We also examine the bias in asset volatility that is generated through the
proxy approach. In Table 6, the percentage difference between the firm asset
volatility as estimated by the proxy approach of Brockman and Turtle (2003)
and that which is obtained by our ML method is reported. We denote by
σproxy the annualized standard derivation of the proxy asset values. The
comparison is based on the following measurement:

Percentage difference of
firm asset volatility

for a firm
=

σproxy − σML

σML

. (12)
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In Table 6, it can be seen that the volatilities that are obtained using the
approach of Brockman and Turtle (2003) deviate substantially from those
that are derived from the ML estimation. The former approach overestimates
the volatility by 74.8% on average.

Table 6: Percentage error in estimating volatility

mean standard deviation
Error of volatilities 0.748 14.78

4.2.4 A final word on the empirical result

Up to this point, we have cast doubt on the ability of the Brockman and Tur-
tle (2003) framework to explain the effect of the default barrier in corporate
claims. However, this does not mean that our approach is perfect. There
are many ways to improve the approach, such as taking into account the
bankruptcy codes, bond values, and other factors. Nevertheless, it is crucial
for us to choose an estimator or proxy that does not create any internal con-
flicts or obvious bias. As empirical analysis is a kind of statistical work, we
suggest using statistical estimation whenever possible, because proxy errors
can sometimes cause serious mistakes.

5 Conclusion

This paper shows theoretically that using the sum of the market value of eq-
uity and the book value of corporate liabilities as a proxy for the market value
of corporate assets leads to an upward bias in the estimation of the default
barrier. To capture default barriers from market information, a maximum
likelihood estimation is proposed to estimate the barrier, the market value of
corporate assets, and the asset value volatility. We test the performance of
the proposed approach with a simulation, and find that it has a good estima-
tion quality. The proposed framework is applied to an empirical study, and
we show that most of the firms in the study have a positive default barrier
that is less than the book value of corporate liabilities. The corporate asset
values are also overstated by the proxy approach, and the asset volatility
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that is implied by the proxy firm values is also unrealistic. Using this study,
we spell out the risk of using proxies in parameter estimation and appeal to
researchers to be aware of this risk.
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Table 3
Descriptive statistics for the sample

Panel A: Debt to equity ratio

Industrial Number of Minimum Median Maximum Mean Standard

sector firm years Derivation

1. Food and beverages (20) 382 0.0336 0.4306 29.3338 1.1030 2.8101

2. Miscellaneous (21,24,25,27,30,31,46,48) 1557 0.0066 0.6865 644.7465 2.3708 17.6009

3. Textiles and apparel (22,23) 231 0.0200 0.7526 1067.2545 10.1094 80.4994

4. Paper products(26) 320 0.0091 1.0545 17.0665 1.6308 1.9783

5. Chemicals (28) 1948 0.0016 0.1689 252.5202 1.5408 12.1809

6. Petroleum (29) 149 0.0515 0.6893 9.7840 1.0849 1.1989

7. Stone, clay, and glass (32) 139 0.0088 0.7941 143.3097 3.0990 13.9116

8. Primary metals (33) 332 0.0274 1.0348 196.6046 3.4254 12.1530

9. Fabricated metals (34) 358 0.0604 0.6718 97.4935 1.4833 5.4988

10. Machinery (35) 1260 0.0030 0.3479 18.8429 0.6998 1.1738

11. Appliances, electrical equipment (36) 1449 0.0025 0.2786 5554.7237 9.4925 177.5735

12. Transportation equipment (37) 422 0.0117 0.8551 173.2681 2.6338 12.1227

13. Miscellaneous manufacturing (38,39) 1598 0.0015 0.2049 95.2583 0.6857 3.0561

14. Railroads (40) 96 0.1469 1.2535 6.4642 1.5994 1.1533

15. Other transportation (41,42,44,45,47) 542 0.0230 1.3396 59.7711 2.9580 5.9337

16. Utilities (49) 971 0.0199 1.4568 114.6390 2.2389 5.8396

17. Other retail trade (50-52, 54-59) 1536 0.0031 0.6544 49.9581 1.5456 3.0665

18. Department stores(53) 27 0.0616 1.6225 4.8043 1.5707 1.4832

Pooled result 13317 0.0015 0.5151 5554.7237 2.6600 60.1983

Panel B: Risk free rate
Mean Standard Derivation Minimum Median Maximum

0.0428 0.0148 0.0132 0.0486 0.0598
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Table 4
Barrier-to-debt ratio (H/X)

Number of percentile proportion

firm years 5% 25% 50% 75% 95% of H < X

Panel A: Pool sample results

Pooled 14333 0.000 0.000 0.738 2.475 18.51 0.557

Panel B: Barrier-to-debt ratio by year

1993 938 0.000 0.000 0.514 2.246 14.82 0.587

1994 1048 0.000 0.000 0.844 2.637 17.29 0.532

1995 1115 0.000 0.000 0.125 1.601 8.29 0.650

1996 1277 0.000 0.000 0.702 2.493 25.38 0.556

1997 1403 0.000 0.000 0.185 2.167 18.48 0.617

1998 1524 0.000 0.277 1.432 3.919 21.67 0.389

1999 1630 0.000 0.000 0.351 1.472 10.97 0.671

2000 1821 0.000 0.000 0.594 2.274 28.00 0.614

2001 1813 0.000 0.000 0.719 2.388 19.29 0.558

2002 1764 0.000 0.029 1.352 3.600 18.43 0.431
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Table 4 (continued)

Number of percentile proportion

firm years 5% 25% 50% 75% 95% of H < X

Panel C: Barrier-to-debt by sectors

1. Food and beverages (20) 392 0.000 0.000 0.545 2.727 12.86 0.561

2. Miscellaneous (21,24,25,27,30,31,46,48) 1642 0.000 0.000 0.608 1.847 6.08 0.590

3. Textiles and apparel (22,23) 250 0.000 0.000 0.521 1.679 8.09 0.656

4. Paper products(26) 305 0.000 0.000 0.653 1.598 4.25 0.590

5. Chemicals (28) 2271 0.000 0.000 1.477 7.318 48.11 0.445

6. Petroleum (29) 168 0.000 0.031 0.695 1.500 2.97 0.601

7. Stone, clay, and glass (32) 115 0.000 0.000 0.669 2.076 13.02 0.583

8. Primary metals (33) 380 0.000 0.000 0.630 1.395 4.44 0.634

9. Fabricated metals (34) 394 0.000 0.000 0.801 2.033 8.17 0.553

10. Machinery (35) 1376 0.000 0.000 0.941 2.950 15.60 0.515

11. Appliances, electrical equipment (36) 1618 0.000 0.000 0.891 3.147 23.61 0.518

12. Transportation equipment (37) 430 0.000 0.000 0.685 1.941 9.46 0.586

13. Miscellaneous manufacturing (38,39) 1682 0.000 0.001 1.247 5.661 32.75 0.465

14. Railroads (40) 103 0.000 0.000 0.295 1.060 3.07 0.728

15. Other transportation (41,42,44,45,47) 525 0.000 0.000 0.581 1.290 3.67 0.661

16. Utilities (49) 1035 0.000 0.000 0.020 0.925 1.83 0.781

17. Other retail trade (50-52, 54-59) 1623 0.000 0.000 0.608 1.816 9.39 0.614

18. Department stores(53) 24 0.000 0.000 1.000 1.514 19.70 0.500
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