STAT 3008 Applied Regression Analysis Tutorial 9.

XU Yongze & DONG Fangyuan

Nov 18 & 19 & 21, 2013

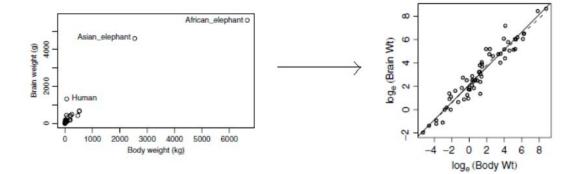
Contents

1 Transformation		2	
	1.1	Why transformation?	2
	1.2	Transformation methods for simple linear regression	2
	1.3	Transformation selection for simple linear regression	3
	1.4	Methods for multiple regression	4
2	Exa	mple	5
3	3 Discussions on Exercise 8-10 solutions		5

1 Transformation

1.1 Why transformation?

& The assumption of linear relation does not hold.



We can transform:

- \star The predictor
- \star The response
- \star Both

to achieve the linear relationship.

1.2 Transformation methods for simple linear regression

Power Transformation

$$\psi(X,\lambda) = \begin{cases} X^{\lambda}, & \text{if } \lambda \neq 0\\ \log X, & \text{if } \lambda = 0 \end{cases}$$

 \clubsuit Log transformation is useful when

- 1. Observations are positive
- 2. Range if variable is huge(i.e. $Max(X) \gg Min(X)$)

 \clubsuit Continuation of the example in part1.1

Both variables have large range. So we perform transformation on both the predictor and the response.

$$\psi(BrainWt, 0) = \alpha + \beta \psi(BodyWt, 0) + e$$

$$\Rightarrow \log(BrainWt) = \alpha + \beta \log(BodyWt) + e$$
$$\Rightarrow BrainWt = e^{\alpha}(BodyWt)^{\beta}e^{e} = \tilde{\alpha}(BodyWt)^{\beta}\delta$$

 δ is multiplicative error.

$$\widehat{BrainWt} = e^{\log(\widehat{BrainWt})} = e^{\hat{\alpha} + \hat{\beta}\log(BodyWt)}$$

C.I. for $e^{\alpha + \beta \log(BodyWt)} \leftarrow$ Delta method.

Scaled Power Transformation

$$\psi_s(X,\lambda) = \begin{cases} \frac{X^{\lambda-1}}{\lambda}, & \text{if } \lambda \neq 0\\ \log X, & \text{if } \lambda = 0 \end{cases}$$

Advantages:

1. Continuous function of λ

2. Preserve the direction of association.

E.g. find transformation for X for true model $E(Y|X) = \beta X^{-\frac{1}{2}}$, Power transformation,

Let $\psi(X, \lambda) = X^{-\frac{1}{2}}$ (i.e. $\lambda = -\frac{1}{2}$), then $E(Y|X) = \beta \psi(X, -\frac{1}{2})$. Scaled power transform,

 $E(Y|X) = \tilde{\alpha} + \tilde{\beta}\psi_S(X,\lambda) = \beta X^{-\frac{1}{2}} \Rightarrow \tilde{\alpha} = \beta, \tilde{\beta} = -\frac{1}{2}\beta, \lambda = -\frac{1}{2}.$

1.3 Transformation selection for simple linear regression

Remarks:

- 1. It is to choose λ ;
- 2. Suppose we only transform X now.

A Method 1: Draw many fitted curves

i.e. Plot (x, \hat{y}) for various λ .

A Method 2: Draw many scatter plots

i.e. Plot $(\psi(X,\lambda), y)$.

A Method 3: Plot λ against RSS of fitting y against $\psi(X, \lambda)$, then find the λ that minimizes RSS.

1.4 Methods for multiple regression

Method 1: Inverse fitted value plot

 \star Plot \hat{Y} against Y.

* Find transformation for Y. \leftarrow see if curve (Y, \hat{Y}_{λ}) matches the pattern of (Y, \hat{Y})

* Match $\rightarrow \hat{\beta}_0 + \hat{\beta}_1 \psi_S(Y, \lambda) = \hat{Y}_\lambda \approx \hat{Y} = X\hat{\beta}$

 \hat{Y} and $\psi_S(Y,\lambda)$ linearly related, while \hat{Y} and $X\hat{\beta}$ linearly related, so $\psi_S(Y,\lambda)$ and $X\hat{\beta}$ linearly related.

Which is the correct order of the steps in the Inverse fitted value plot?

- [a]. Plot \hat{Y}_{λ} against Y.
- [b]. Fit a linear regression between Y and X, obtaining \hat{Y} .
- [c]. Specify a scaled-power transformation $\psi_S(Y; \lambda)$.
- [d]. Fit \hat{Y} against $\psi_S(Y; \lambda)$, obtaining \hat{Y}_{λ} .
- [e]. Plot \hat{Y} against Y.

Ans: b,e,c,d,a.

* After the above steps, we have decided an λ . Then go back to the analysis and fit $\psi_S(Y,\lambda)$ against X.

Method 2: Modified Power transformation for all predictors

Use the modified power family:

$$\psi_M(Y,\lambda) = \begin{cases} (\sqrt[n]{y_1 \cdots y_n})^{1-\lambda} \frac{Y^{\lambda} - 1}{\lambda}, & \text{if } \lambda \neq 0\\ (\sqrt[n]{y_1 \cdots y_n})^{1-\lambda} \log Y, & \text{if } \lambda = 0 \end{cases}$$

Transform predictors so that each pair of predictors in the scatterplot matrix have a linear relationship.

$$(X_1, X_2, \cdots, X_p) \rightarrow (\psi_M(X_1, \lambda_1), \psi_M(X_2, \lambda_2), \cdots, \psi_M(X_p, \lambda_p))$$

Method 3: Box Cox Transformation

Modified power family:

$$\psi_M(Y,\lambda) = \begin{cases} (\sqrt[n]{y_1 \cdots y_n})^{1-\lambda} \frac{Y^{\lambda} - 1}{\lambda}, & \text{if } \lambda \neq 0\\ (\sqrt[n]{y_1 \cdots y_n})^{1-\lambda} \log Y, & \text{if } \lambda = 0 \end{cases}$$

Advantage:

Unit of $\psi_M(Y,\lambda)$ is the same as Y for all λ .

 \clubsuit Selection of λ .

* Fix a λ , fit model with transformed Y_{λ} and obtain $RSS(\lambda)$

* Try various λ and find the one which minimizes $RSS(\lambda)$

2 Example

Thomas is analyzing a data set using the Box-Cox transformation. The minimum value of RSS occurs when $\lambda = -0.979$. Therefore, he transformed the response with

$$(\sqrt[n]{y_1\cdots y_n})^{1.979} \frac{Y^{-0.979}-1}{-0.979}$$

Any comment?

 $\lambda = -0.979$ seems to have no good interpretations or meanings. I would suggest $\lambda = -1$ as it may have a better interpretation.

3 Discussions on Exercise 8-10 solutions