STAT 3008 Applied Regression Analysis Tutorial 2. Simple Linear Regression

XU Yongze

Sep 16 & 17& 19, 2013

Contents

1 Basic Concepts

let $\mu_1, ..., \mu_n$ be n random variables. $a_0, ..., a_n$ be n+1 constant.

1.1 Expectation

$$E(\mu_i) = \int \mu_i f(u_i) du_i = \sum \mu_i f(\mu_i)$$
(1.1)

$$E(a_0 + \sum_{i=1}^n a_i \mu_i) = a_0 + \sum_{i=1}^n a_i E(\mu_i)$$
(1.2)

1.2 Variance

$$Var(\mu_i) = E([\mu_i - E(\mu_i)]^2)$$
 (1.3)

$$Var(a_0 + \sum_{i=1}^{n} a_i \mu_i) = \sum_{i=1}^{n} a_i^2 Var(u_i)$$
 $\mu_1, ..., \mu_n$ are independent (1.4)

1.3 Covariance

$$Cov(\mu_i, \mu_j) = Cov(\mu_j, \mu_i) = E[\mu_i - E(\mu_i)][\mu_j - E(\mu_j)]$$
 (1.5)

$$Cov(\mu_i, \mu_i) = Var(\mu_i)$$
 (1.6)

$$Cov(a_0 + a_1\mu_1, a_2 + a_3\mu_2) = a_1a_3Cov(\mu_1, \mu_2)$$
 (1.7)

$$Var(a_0 + \sum_{i=1}^{n} a_i \mu_i) = \sum_{i=1}^{n} a_i^2 Var(i) + 2 \sum_{i < j} a_i a_j Cov(\mu_i, \mu_j)$$
(1.8)

1.4 Correlation

$$\rho(\mu_i, \mu_j) = \frac{Cov(\mu_i, \mu_j)}{\sqrt{Var(\mu_i)Var(\mu_j)}}$$
(1.9)

2 Basic Simple Linear Regression

♦ The model is defined as:

$$y_i = \beta_0 + \beta_1 x_i + e_i, \quad e_i \sim \text{i.i.d.} N(0, \sigma^2)$$
 (2.1)

- x_i is known
- another expression of the model: $E(Y|X=x)=\beta_0+\beta_1x, Var(Y|X=x)=\sigma^2.$

 \diamondsuit Parameters of Interest: $\beta_0, \beta_1, \sigma^2$

 β_0 : y-intercept(value of y when x = 0)

 β_1 : slope (change of y if x changes by 1 unit)

 σ^2 : variance of the random error

♦ Estimation:

Ordinary Least Square Method: "least square" is a criterion, an idea to find the "best fit". It doesn't matter what the distribution of y_i is and what the specific model is.

$$\hat{y_i} = \hat{\beta_0} + \hat{\beta_1} x_i$$

Residual for case i is:

$$\hat{e}_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i$$

RSS(Residual Sum of Square) = $\sum \hat{e_i}^2$

Minimize the RSS:

$$(\beta_0, \beta_1) = argmin_{\beta_0, \beta_1} RSS(\beta_0, \beta_1)$$

$$\frac{\partial \mathbf{RSS}}{\partial \beta_0}|_{\beta_0 = \hat{\beta_0}} = 0 \tag{2.2}$$

$$\frac{\partial \mathbf{RSS}}{\partial \beta_1}|_{\beta_1 = \hat{\beta}_1} = 0 \tag{2.3}$$

Solve the equations:

$$\hat{\beta}_1 = \frac{SXY}{SXX} \tag{2.4}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \tag{2.5}$$

with:

$$\begin{split} \bar{y} &= \frac{1}{n} \sum_{i} y_{i} \\ \bar{x} &= \frac{1}{n} \sum_{i} x_{i} \\ SYY &= \sum_{i} \left(y_{i} - \bar{y} \right)^{2} = \sum_{i} y_{i}^{2} - n\bar{y}^{2} \\ SXX &= \sum_{i} \left(x_{i} - \bar{x} \right)^{2} = \sum_{i} x_{i}^{2} - n\bar{x}^{2} \\ SXY &= \sum_{i} \left(x_{i} - \bar{x} \right) \left(y_{i} - \bar{y} \right) = \sum_{i} x_{i} y_{i} - n\bar{x}\bar{y} \\ \widehat{RSS} &= SYY - \frac{SXY^{2}}{SXX} = SYY - \hat{\beta_{1}}^{2} SXX \end{split}$$

♦ Properties of estimators:

•
$$E(\hat{\beta}_0) = \beta_0, E(\hat{\beta}_1) = \beta_1, E(\hat{\sigma}^2) = \sigma^2$$

- $\sum \hat{e_i} = 0$ (But $\sum e_i \neq 0$.)
- $\bar{y}=\hat{eta}_0+\hat{eta}_1\bar{x}$ (The fitted line passes through (\bar{x},\bar{y}) .)

The second and third points are only for the model $y_i = \beta_0 + \beta_1 x_i + e_i$, $e_i \sim \text{i.i.d}N(0, \sigma^2)$. Otherwise they are not always true.

Example: a model $y_i = \beta x_i + e_i, e_i \sim \text{i.i.d.} N(0, \sigma^2)$ (assuming that $\beta_0 = 0$),

$$RSS = \sum (y_i - \beta x_i)^2.$$

$$\frac{\partial RSS}{\partial \beta} = -2 \sum x_i (y_i - \beta x_i) = 0 \Rightarrow \hat{\beta} = \frac{\sum x_i y_i}{\sum x_i^2}.$$

No equation to ensure $\sum (y_i - \hat{y}_i) = \sum (y_i - \hat{\beta}x_i) = 0$. When $\sum (y_i - \hat{\beta}x_i) \neq 0$, $\sum y_i \neq \hat{\beta} \sum x_i$, i.e., $\bar{y} \neq \hat{\beta}\bar{x}$, the fitted line does NOT pass through (\bar{x}, \bar{y}) .

3 Exercises

- 3.1 Exercise 2 Q1 2.1.2, 2.1.3
- 3.2 Exercise 2 Q2
- 3.3 Exercise 3 Q6
- 3.4 Exercise 2 Q4

4 Appendix

To calculate $E(\hat{\beta}_0)$, $Var(\hat{\beta}_0)$ and $Cov(\hat{\beta}_0, \hat{\beta}_1)$ for the model $y_i = \beta_0 + \beta_1 x_i + e_i$, $e_i \sim i.i.d.N(0, \sigma^2)$, which was not done in the lecture for reasons of time, is a good practice of using the basic concepts and culculation rules of expectations, variance and covariance.

4.1 $E(\hat{\beta_0})$

$$E(\hat{\beta}_0) = E(\bar{y}) - \bar{x}E(\hat{\beta}_1) = \frac{1}{n} \sum Ey_i - \bar{x}\beta_1 = \frac{1}{n} \sum (\beta_0 + \beta_1 x_i) - \frac{1}{n}\beta_1 \sum x_i = \beta_0.$$
 (4.1)

4.2 $Var(\hat{\beta_0})$

$$: Cov(\bar{y}, \hat{\beta}_1) = 0,$$

$$: Var(\hat{\beta}_0) = Var(\bar{y}) + \bar{x}^2 Var(\hat{\beta}_1) = \frac{1}{n} Var(y_i) + \bar{x}^2 \frac{\sigma^2}{SXX} = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{SXX}\right). \tag{4.2}$$

4.3 $Cov(\hat{\beta}_0, \hat{\beta}_1)$

$$: Cov(\bar{y}, \hat{\beta}_1) = 0,$$

$$: Cov(\hat{\beta}_0, \hat{\beta}_1) = Cov(\bar{y} - \hat{\beta}_1 \bar{x}, \hat{\beta}_1) = -\bar{x} Var(\hat{\beta}_1) = -\sigma^2 \frac{\bar{x}}{SXX}. \tag{4.3}$$