STAT 3008 Applied Regression Analysis Tutorial 10.

XU Yongze & DONG Fangyuan

Nov 25 & 26 & 28, 2013

Contents

1	Overview of Course Content		2
2	Dia	gnostics with Residuals	3
	2.1	What is the diagnostics?	3
	2.2	About H	3
	2.3	Residuals	3
	2.4	Leverage	4
3	Solı	itions of Homework3	4

1 Overview of Course Content

- Simple linear regression & Multiple linear regression
 - scatter plot
 - model(definition and notation)
 - residual plots
 - parameters' estimates
 - hypothesis tests
 - confidence intervals
 - draw conclusion(association/causal)
- Further discussion
 - Look at the linear assumption:
 - * polynomial regression
 - * transformation
 - Look at the linear predictors:
 - * aliased
 - * misfitted model(overfitted/lurking variable)
 - * model selection
 - * qualitative \rightarrow factors
 - Look at errors:
 - * normality assumption \rightarrow QQ-plot
 - * unequal variance \rightarrow weighted least square
 - Look at particular cases of observations:
 - * outlier tests
 - * leverage
 - * Cook's distance
- Some techniques
 - added-variable plot(another way to find $\hat{\beta}_1$)
 - Delta method(find out that $g(\hat{\theta}) \sim N(g(\theta), \sigma^2 g'(\theta)^T D g'(\theta))$, so as to find C.I. for $g(\theta)$)

2 Diagnostics with Residuals

2.1 What is the diagnostics?

Regression diagnostics are used after fitting so as to check whether assumptions(mean/var/error) are consistent with observed data. The basic tools are residuals or scaled residuals. The basic idea is to check if the residuals look reasonable(null plot: mean zero, constant variance, no seperated points).

2.2 About H

 $H = (h_{ij})_{n \times n}$

 h_{ii} is called leverage.

$$\begin{split} H &= X(X'X)^{-1}X'\\ H^t &= H\\ H^2 &= H\\ tr(H) &= p+1\\ \sum_{i=1}^n h_{ji} &= \sum_{i=1}^n h_{ij} = 1\\ HJ &= J\\ H\mathbf{1} &= \mathbf{1}\\ JJ &= nJ\\ HX &= X\\ X'H &= X'\\ (I-H)X &= 0\\ H(I-H) &= 0\\ Cov(\hat{e}, \hat{Y}) &= 0\\ Cov(\hat{e}, \hat{Y}) &= 0\\ Cov(\hat{e}, \hat{Y}) &= \sigma^2(I-H)\\ Cov(e, \hat{Y}) &= \sigma^2 H\\ Cov(e, \hat{Y}) &= \sigma^2 I\\ RSS: \sum(Y_i - \hat{Y}_i)^2 &= Y'(I-H)Y\\ TSS(SYY): \sum(Y_i - \bar{Y})^2 &= Y'(I - \frac{1}{n}J)Y\\ SSreg: \sum(\hat{Y}_i - \bar{Y})^2 &= Y'(H - \frac{1}{n}J)Y \end{split}$$

2.3 Residuals

$$\hat{\mathbf{e}} = Y - X\hat{\beta} = (I - H)Y = (I - H)\mathbf{e}$$

Assumptions for *e*:

E(e), $Var(e) = \sigma^2 I$, *e* is normally distributed.

\clubsuit Properties of \hat{e} :

 ${\rm E}(\hat{e})=0,~{\rm Var}\hat{e}=\sigma^2(I-H),$ dependent & non-identically distributed. Then,

$$Var(\hat{e}_i) = \sigma^2 (1 - h_{ii})$$
$$Cov(\hat{e}_i, \hat{e}_j) = -\sigma^2 h_{ij}$$

The higher the leverage, the smaller the variance of \hat{e}_i .

Checkthe residual:

The residual plot should look like the null plot.

2.4 Leverage

$$\hat{Y} = HY$$
$$\hat{Y}_i = \sum_{k=1}^n h_{ik} Y_k = h_{ii} Y_i + \sum_{k \neq i}^n h_{ik} Y_k$$

As h_{ii} approaches to 1, $h_{ik}(k \neq i)$ approaches to 0, so \hat{Y} gets closer to Y_i . h_{ii} is pulling \hat{Y}_i towards Y_i , giving the name levrage. For cases with large values of h_{ii} , no matter what value of y_i is observed, we are nearly certain to get a residual near 0. But, be careful of leverage point if $h_{ii} \sim 1$.

3 Solutions of Homework3