STAT 3008 Applied Regression Analysis Midterm 2:45-4:15. Monday, 29 Oct 2012

Name: _____ Major:

- 1. $X_1, X_2, ..., X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$ Let $\overline{X} = \frac{X_1 + X_2 + ... + X_n}{n}$ and $S^2 = \frac{\sum_{i=1}^n (X_i \overline{X})^2}{n-1}$ Which of the following is incorrect? (Circle the answer)(3 marks)
 - a) $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$ b) $\frac{(\overline{X}-\mu)\sqrt{n}}{\sigma} \sim N(0,1)$ c) $\frac{(\overline{X}-\mu)\sqrt{n}}{S} \sim t(n)$
 - d) S^2 is unbiased estimator of σ^2
- 2. Null plot means a scatter plot with what characteristic(s)? (3 marks)
- 3. Use the simple linear regression model to fit a straight line on two data points: (-2, 4), (-1, 3). What are the values of $\hat{\beta}_0$ and $\hat{\beta}_1$? (5 marks)

- 4. Which can be consistently estimated in linear regression? (Circle the answer(s))(3 marks) a) β_0 , b) β_1 , c) Error term, d) Error variance, e) $Var(\beta_0)$.
- 5. Let \hat{e} be the residual vector of a simple linear regression between variables y and x. Proof or disproof: Var $(\hat{e}) = \sigma^2 I$. (6 marks)

6. Keith collected a data set of size n = 5, namely, $\{x_i, y_i\}_{i \in \{1,2,3,4,5\}}$, where y_i denotes the *i*-th student's GPA while x_i denote his/her I.Q. score. Keith applied a simple linear regression model $Y_i = \beta_0 + \beta_1 x_i + e_i$. Suppose that he obtains $\{\hat{e}_1, \ldots, \hat{e}_4\} = \{0.1, -0.2, 0.3, -0.1\}$ and SYY = 3.3. What is the value of R^2 . (6 marks)

- 7. Which of the following is a stronger correlation than -0.42? (Circle the answer) (3 marks) a) 0, b) -0.1, c) -0.6, d)2.
- 8. In simple linear regression, if the value of the predictor X is replaced by cX, where c is some non-zero constant, which of the following will be affected? (Circle the answer(s))
 (a) β₀, (b) β₁, (c) σ², (d) R², (e) t-test statistic of the null hypothesis H₀: β₁ = 0. (6 marks)
- 9. If X is an n by r matrix and I_n is an n by n identity matrix, Find $tr(I_n X(X'X)^{-1}X')$. (3 marks)

10. Let $f(\beta) = Y^T X \beta - \beta^T X^T X \beta$ where β and Y are column vectors and X is an n by p matrix, find the minimum value of $f(\beta)$. (3 marks)

11. What is the difference between confidence interval and confidence band for E(Y|X)? (3 marks)

12. Given Y = (-2, -1, 6, 9), $X_1 = (1, 2, 3, 6)$ and $X_2 = (-2, 0, 0, 2)$. Fill in the ANOVA Table: (6 marks)

ANOVA Table									
Source	Sum of Squares	d.f.	Mean Square	F-statistics					
Regression									
Residuals	12								
Total									

13. (5 marks). For the regression $Y = X\beta + e$, $e \sim N(0, \sigma^2)$, let $\hat{y}_i = X_i \hat{\beta}$ be the fitted value of the *i*-th observation, i = 1, ..., n. Let X be a $n \times p$ matrix. Find $E(\sum_{i=1}^n \hat{y}_i^2)$ in terms of X, β , p and σ^2 .

14. (30 marks) A certain metal discolours when exposed to air. To protect the metal against discoloration, it is coated with a chemical. In an experiment, coatings of varying thickness, x mm, of the chemical were applied to standard samples of the metal, and the times, t hours, for the metal to discolour were noted. The results are as shown.

х	1.8	3.0	4.0	5.7	7.2	8.4	10.3
t	3.4	5.9	7.0	8.7	9.5	10.4	11.1

i) (4 marks) A researcher suggests that the theoretical relationship between t and x should be of the form

$$exp(t) = Ax^B,$$

where A and B are constants. Show that this relationship may be expressed in the form

$$t = a + blogx,$$

where a and b are functions of A and B respectively, which you should identify.

ii) (10 marks) The researcher found that

$$\sum \log x = 11.2476, \ \sum t = 56, \ \sum (\log x)^2 = 20.3687, \ \sum t \ \log x = 100.101,$$

Use these results to calculate the least squares regression line of t on log x. Plot this line and the data on a scatter diagram with values of log x on the horizontal axis. Is this fitting appropriate?

iii) (8 marks) For the model in (ii), construct a 95% confidence band by joining the values of the band on x = 2, 4, 6, 8. Draw the band on the graph in (ii)

iv) (8 marks) Scratch the 95% confidence ellipse for the parameter (a, b). (You may use 6 points to stretch the ellipse.)

- 15. (10 marks). Given three variables $Y = (y_1, \ldots, y_n), X_1 = (x_1, \ldots, x_n), X_2 = (1, 1, 1, \ldots, 1).$
 - i) (5 marks) Find the slope of the added variable plot between Y and X1, with the effect of X2 removed.

ii) (5 marks) Find the slope of the added variable plot between Y and X2, with the effect of X1 removed.

16. (5 marks) Let Y and X be two vectors as shown below. Express the length of the segment OA in terms of X and Y in vector's notation. If you want to

represent the vector Y by cX for some constant c, which c should you use?

End of paper