STAT 3008 Homework 4 Due date: 5pm, Dec 5 (Friday). Assignment Box at LSB 1/F.

- 1. Consider the dataset
 - y = (4.562, 12.280, 21.018, 35.643, 54.084, 76.642, 192.780),

x1 = (1, 2, 3, 4, 5, 6, 7),

 $x_2 = (4, 3, 5, 2, 6, 1, 7).$

- i) Draw a scatterplot matrix to represent the dataset.
- ii) Use Box-Cox transformation to select a model (transform response only). Select among $\lambda = (-1, -1/2, 0, 1/3, 1/2, 1, 2).$
- iii) Use modified power transformation to select a model (transform predictors only). (There are a lot of possibilities, just target at one transformation that you feel reasonable.)
- iv) Compute the RSS for each of the best fit model in ii) and iii). Which method gives a smaller RSS?
- 2. Consider the weighted least square regression

$$Y = X\beta + e,$$
 $e \sim N(0, \sigma^2 W^{-1}),$ (1)

where X is a $n \times (p+1)$ matrix.

- i) Find the hat matrix H for weighted least square regression, where H satisfies $\hat{Y} = HY$.
- ii) Is H symmetric?
- iii) Is HH = H?
- iv) Is HX = X?
- v) Is X'H = X'?
- vi) Is tr(H) = p + 1?

3. For the regression model $Y = \beta_o + \beta_1 X_1 + \beta_2 X_2 + e$, $e \sim N(0, \sigma^2 I)$, find

- i) $E(\sum_{i=1}^{n} (\hat{Y}_i \bar{Y})^2).$
- ii) $E(\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2).$
- iii) $E(\sum_{i=1}^{n} (Y_i \bar{Y})^2).$
- 4. Consider the following dataset.

	Y	X_1	X_2	X_3
1	2	1	1004	5.2
2	1	200	806	6.1
3	3	-50	1058	4.9
4	4	909	941	6.5
5	1	506	100	2.4
6	8	1200	505	8.1

- i) Find the variance inflation factor for each of the predictors.
- ii) Use the Forward Selection algorithm with AIC criterion to select the best model.
- iii) Use the Backward Elimination algorithm with BIC criterion to select the best model.