Chapter 6

Polynomial Regression and Factors

6.1 Polynomial Regression

Model

$$E(Y \mid X = x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_d x^d$$
$$Var(Y \mid X = x) = \sigma^2$$

- Properties
 - Rarely represent physical model
 - Sometime well describe the shape of mean function

6.1 Polynomial with several predictors

Model: e.g. Second order mean function

$$E(Y \mid X = x_i) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{12} x_1 x_2 + \beta_{22} x_2^2$$

Var(Y \neq X = x_i) = \sigma^2 interaction

Interaction

 $E(Y|X_1 = x_1, X_2 = x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2$

 $E(Y|X_1 = x_1 + \delta, X_2 = x_2) = \beta_0 + \beta_1(x_1 + \delta) + \beta_2 x_2 + \beta_{11}(x_1 + \delta)^2 + \beta_{22} x_2^2 + \beta_{12}(x_1 + \delta) x_2$

$$\longrightarrow \quad \mathbf{E}(Y|X_1 = x_1 + \delta, X_2 = x_2) - \mathbf{E}(Y|X_1 = x_1, X_2 = x_2)$$

 $= (\beta_{11}\delta^2 + \beta_1\delta) + 2\beta_{11}\delta x_1 + \beta_{12}\delta x_2$ Effect of a change in x_1 depends on x_2

6.1 Example

Data

- Y = Score for cake (Higher the better)
- X₁ = baking time
- X₂ = baking temperature
- Model 1 (No interaction)

$$E(Y|X_1 = x_1, X_2 = x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2$$

Model 2 (Has interaction)

$$E(Y|X_1 = x_1, X_2 = x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2$$

6.1 Example

6.1 Example

- Model 1 (No interaction, NH) $E(Y|X_1 = x_1, X_2 = x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2$
- Model 2 (Has interaction, AH) $E(Y|X_1 = x_1, X_2 = x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2$
- Remarks
 - We can select the best model by F-test

$$F = \frac{(RSS_{NH} - RSS_{AH})/(df_{NH} - df_{AH})}{RSS_{AH}/df_{AH}}$$

We can bake the best cake by maximizing E(Y|x₁,x₂) w.r.t x₁ and x₂.

6.1.2 Delta method

 Suppose it is found that $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X + \hat{\beta}_2 X^2$ How do you assign X so that Y is max/min? $\hat{Y} = \hat{\beta}_o - \frac{\hat{\beta}_1^2}{4\hat{\beta}_2} + \hat{\beta}_2 \left(X + \frac{\hat{\beta}_1}{2\hat{\beta}_2} \right)^2$ • $\hat{X} = -\frac{\hat{\beta}_1}{2\hat{\beta}_2}$ Can we construct confidence interval for \hat{X} ?

6.1.2 Delta method

- Delta Method = Taylor Series + Normal approx.
- Set-up
 - Known: $\hat{\theta} \sim N(\theta, \sigma^2 D)$
 - Want : The distribution of $g(\hat{\theta})$.
- Delta Methods:
 - $g(\hat{\theta}) = g(\theta) + g'(\theta)^T (\hat{\theta} \theta) + error$
 - $\mathsf{E}(g(\hat{\theta})) \approx g(\theta)$
 - $\operatorname{Var}(g(\hat{\theta})) \approx g'(\theta)^T \operatorname{Var}(\hat{\theta} \theta) g'(\theta) = \sigma^2 g'(\theta)^T D g'(\theta)$

 $g(\hat{\theta}) \sim N(g(\theta), \sigma^2 g'(\theta)^T D g'(\theta))$

6.1.2 Delta method

Delta Method

$$\hat{\theta} \sim N(\theta, \sigma^2 D)$$
$$g(\hat{\theta}) \sim N(g(\theta), \sigma^2 g'(\theta)^T D g'(\theta))$$

Example

•
$$g(\hat{\beta}) = \hat{X} = -\frac{\hat{\beta}_1}{2\hat{\beta}_2}, \quad \hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) \sim \mathsf{N}(\beta, \sigma^2 (X'X)^{-1})$$

Delta Methods:

•
$$g'(\beta) = (0, -\frac{1}{2\beta_2}, \frac{\beta_1}{2\beta_2^2})$$

• $\widehat{Var}\left(g(\hat{\beta})\right) \triangleq \hat{\sigma}^2\left(0, -\frac{1}{2\hat{\beta}_2}, \frac{\hat{\beta}_1}{2\hat{\beta}_2^2}\right)(X'X)^{-1}\left(0, -\frac{1}{2\hat{\beta}_2}, \frac{\hat{\beta}_1}{2\hat{\beta}_2^2}\right)^T$

95% C. I forg(β) = $g(\hat{\beta}) \pm 1.96 \overline{Var}(g(\hat{\beta}))$

6.1.2 Delta Method

- What is the difference between the following two groups?
 - Height, weight, speed
 - Gender, blood type, eye color.

- Two types of variables
 - Quantitative variables
 - Measured in a numeric scale.
 - Has unit
 - e.g. Height, weight, speed, population
 - Qualitative/Categorical variables
 - Divided into levels/categories
 - No unit
 - e.g. Gender, blood type, eye color.

- Simple case: Factor with 2 levels
 - e.g. male/female, pass/fail
 - Use dummy variable (also called indicator)

 $U_i = \begin{cases} 0 - - & \text{the i-th observation is F} \\ 1 - - & \text{the i-th observation is M} \end{cases}$

• e.g. Height_i = $\beta_0 + \beta_1 U_i + e_i$

β₁ = the additional effect for one level over another.
 = the mean height difference between male and female

• Not so simple case: Factor with >2 levels

- e.g. blood type, eye color, college
- e.g. GPA = $\beta_0 + \beta_1 C + e$

$$C = College = \begin{cases} 0 - - & CC \\ 1 - - & UC \\ 2 - - & NA \\ 3 - - & NC (New Colleges) \end{cases}$$

Is it reasonable?

- Factor with d levels
 - The factor rule:
 - A factor with d levels can be represented by (d-1) dummy variables and the intercept.
 - How to use dummy variable?

• e.g. GPA =
$$\beta_0 + \beta_1 C_{UC} + \beta_2 C_{NA} + \beta_3 C_{NC} + e$$

 $C_{UC} = \begin{cases} 0 - - \text{not UC} \\ 1 - - \text{UC} \end{cases}, \quad C_{NA} = \begin{cases} 0 - - \text{not NA} \\ 1 - - \text{NA} \end{cases}, \quad C_{NC} = \begin{cases} 0 - - \text{not NC} \\ 1 - - \text{NC} \end{cases}$

• Essentially, we model each group with a separate mean.

• $\beta_0 = E(GPA|CC)$, $\beta_0 + \beta_1 = E(GPA|UC)$, $\beta_0 + \beta_2 = E(GPA|NA)$ $\beta_0 + \beta_3 = E(GPA|NC)$

Factor with d levels

• e.g. $GPA = \beta_0 + \beta_1 C_{UC} + \beta_2 C_{NA} + \beta_3 C_{NC} + e$ $C_{UC} = \begin{cases} 0 - - \operatorname{not} UC \\ C_{UC} = \end{cases} \begin{cases} 0 - - \operatorname{not} NA \\ C_{UC} = \end{cases} \begin{cases} 0 - - \operatorname{not} NC \\ C_{UC} = \end{cases}$

' = ₹			$C = \begin{cases} c \\ c$		$C = \langle$	
UC –	1UC	,	$C_{NA} = \left(1 - 1\right)$	– NA	, \mathcal{O}_{NC} –	(1 - NC)

Implementation

Student	GPA	College	C _{UC}	C _{NA}	C _{NC}	
Bun	3.6	UC	1	0	0	
Wing	3.9	WS	0	0	1	
KiKi	3.5	NA	0	1	0	
Cherry	3.8	UC	1	0	0	
Jeremy	3.6	CC	0	0	0	

R-Implementation

College=c("uc","nc","na","uc","cc")

C.uc=as.numeric(College=="uc"); C.na=as.numeric(College=="na"); C.nc=as.numeric(College=="nc")

Example (Sleep data, sleep1.txt)

- Y = total hours of sleep
- X = D = danger of species = 1 to 5.

Model:

• $E(TS|D) = \eta_0 + \eta_2 U_2 + \eta_3 U_3 + \eta_4 U_4 + \eta_5 U_5$

Kesult.	Estin	nate	Std. Error	<i>t</i> -value	Pr(> t)				
(b) Mean func	(b) Mean function (6.16)								
Intercept	13.0	0833	0.8881	14.73	0.0000				
U_2	-1.3333		1.3427	-0.99	0.3252				
U_3	-2.7	7733	1.4860	-1.87	0.0675				
U_4	-4.2	2722	1.5382	-2.78	0.0076				
U_5	-9.0)119	1.6783	-5.37	0.0000				
	Df	Sum Sq	Mean Sq	<i>F</i> -value	Pr(>F)				
D	4	457.26	114.31	8.05	0.0000				
Residuals	53	752.41	14.20						

- Remark 1
 - We may use the model
 - $E(TS|D) = \beta_1 U_1 + \beta_2 U_2 + \beta_3 U_3 + \beta_4 U_4 + \beta_5 U_5$

Instead of

Convenient for comparing mean functions

Convenient for interpretable parameters

 $E(TS|D) = \eta_0 + \eta_2 U_2 + \eta_3 U_3 + \eta_4 U_4 + \eta_5 U_5$

The major difference is in the interpretation of estimates: β_k = the mean of group k

 η_k = the mean of group k over group 1

- Remark 2
 - This is an example of One way ANOVA
 - Fit a separate mean for each level of a factor.
 - Null model -- H_o : All groups have the same mean, i.e. η_s =0, for s>0
 - Alternative -- H_A : Not all groups have the same mean, i.e. some $\eta_s \neq 0$

6.2 General Cases – add more predictors

- Example (Sleep data, sleep1.txt)
 - Y = total hours of sleep
 - $X_1 = D = danger of species = 1 to 5.$
 - X₂ = Body weight
- Model 1 (Full model)

 $E(TS|\log(BodyWt) = x, D = j) = \eta_0 + \eta_1 x + \sum_{i=1}^{N} (\eta_{0j}U_j + \eta_{1j}U_jx)$

j=2

j=2

• Model 2 (Parallel regression)

$$\mathcal{E}(TS|\log(BodyWt) = x, D = j) = \eta_0 + \eta_1 x + \sum \left(\eta_{0j} U_j\right)$$

• Model 3 (Common intercept)

$$E(TS|\log(BodyWt) = x, D = j) = \eta_0 + \eta_1 x + \sum (\eta_{1j}U_jx)$$

Model 4 (simple regression, ignore effect of D)

 $E(TS|\log(BodyWt) = x, D = j) = \eta_0 + \eta_1 x$

6.2 General Cases – add more predictors

Implementation

• Model 1 (Full model)

$$E(TS|\log(BodyWt) = x, D = j) = \eta_0 + \eta_1 x + \sum_{j=2}^{d} \left(\eta_{0j} U_j + \eta_{1j} U_j x \right)$$

Animal	TS	D	U ₂	U ₃	U ₄	U ₅	X (BodyWt)	U ₂ X	U ₃ X	U ₄ X	U ₅ X
1	4.1	2	1	0	0	0	51	51	0	0	0
2	5.3	1	0	0	0	0	62	0	0	0	0
3	3.0	3	0	1	0	0	23	0	23	0	0
4	8.7	5	0	0	0	1	70	0	0	0	70

6.2 General Cases – add more predictors

