
Chapter 4

Drawing Conclusion



4.1 Understanding parameter estimates
parameters=(β0, β1,… βp, σ2)

 Unit of βs:  
 unit of y/unit of x. (e.g. gallon/$1000 for -6.14)

 Unit of σ2:
 (unit of y)2

 Meaning of βi: 
 Rate of change of y on xi , after adjusting for other variables 
 e.g.

 Fuel decreased by 6.14 gallon when Income increased by $1000
 Fuel increased by 18.54 gallon when Miles is doubled (log22x=1+log(x))

 Meaning of σ2: 

 Variability that can’t be explained by the regression line.



4.1.3 Berkeley Guidance study

 To Illustrate: interpretation of regression depends on other terms

 Background
 Study the growth of boys and girls
 Y=Soma=Body type -- 1 to 7 (thin to fat)
 Predictors:

 WT2 = weight at age 2
 WT9 = weight at age 9
 WT18 = weight at age 18

 First thing to do: Scatterplot
 Roughly linear relationship



4.1.3 Berkeley Guidance study

 Second thing to do: Fit a regression
 Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18

What?
 Heavier at age 2  thinner now? (-0.116) 
 Explanations:

 p-value = 0.06, not very significant
 May be due to correlations between the terms    

(WT2, WT9 and WT18 are correlated)



4.1.3 Berkeley Guidance study

 Second thing to do: Fit a regression
 Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18

 Modification: Define new terms
 DW9 = WT9 - WT2 = Weight gain from age 2 to 9
 DW18 = WT18 - WT9 = Weight gain from age 9 to 18
 Hope the correlation between WT2, DW9 and DW18 are 

smaller
 Soma=1.59 - 0.011 WT2+0.105 DW9+0.048 DW18

 Now the coefficient -0.0111 is not significant
 Soma depends on DW9 and DW18 but not WT2

 Conclusion: 
 Interpretation of the effect of a variable depends on other 

variables.



4.1.3 Berkeley Guidance study

 Remark: If all five variables are included. We get
 Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18+ NA DW9 +NA DW18
 Since the model is unidentifiable! 

1. Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18
2. Soma=1.59-(0.116+b) WT2+(0.056+b) WT9+0.048 WT18 - b DW9
 Any b in model 2 is essentially model 1!
 Reason: DW9 and DW18 are linear combination of WT2, WT9 and 

WT18, they do not contribute to any extra information
 In this case the terms are said to be aliased. Some irrelevant terms 

need to be dropped out.
 Try the R-code

 x1=rnorm(100); x2=rnorm(100); 
e=rnorm(100,0,0.1);y=1+2*x1+3*x2+e; z=x1+2*x2

 lm(y~x1+x2)
 lm(y~x1+x2+z)
 lm(y~z+x1+x2)



4.1.3 Berkeley Guidance study

 Remark: 
 Aliased:

 Some predictors are linear combinations of other predictors
 Multicollinearity: 

 Some predictors are highly correlated.
 Perfect multicollinearity (correlation=1) is equivalent to being aliased.

 Mathematically,
 When two columns of Matrix X are similar (correlated predictors), (X’X)-1 is 

unstable. 
 Reason: (X’X)’s determinant is close to 0.
 Therefore

 Estimator of β (i.e., (X’X)-1X’Y) is unstable 
 Variance σ2(X’X)-1 can be very large 

 Intuitively, 
1. Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18
2. Soma=1.59-(0.116+b) WT2+(0.056+b) WT9+0.048 WT18 - b DW9
 Any b in model 2 is essentially model 1!
 Therefore

 Estimator of β, (X’X)-1X’Y is unstable 
 Variance σ2(X’X)-1 can be very large

Conclusion: Check for multicollinearity by studying predictors’ correlation!



4.1.6 Dropping terms

 What happens when a bigger model is fit to 
the data from a smaller model?
 Data:

 Y=β0+ β1X1+ β2X2+e
 Model:

 Y= β0+ β1X1+ β2X2+ β3X3+ β4X4+e

 What happens when a smaller model is fit to 
the data from a bigger model?

0ˆ,0ˆ   : 43  Answer



4.1.6 Dropping terms

 What happens when a smaller model is 
fit to the data from a bigger model?
 Data (truth): 

 A=Area, L=Length, W=Width
 Area=Length*Width
 E(log(A)|L,W)=0+(1)log(L)+(1)log(W)

 Model:
 E(log(A)|L)=β0+ β1log(L)



 Data:   E(log(A)|L,W)=0+(1)log(L)+(1)log(W)
 Model:      E(log(A)|L)= β0+ β1log(L)

 From the true model, we get
 E(log(A)|L)=E(E(log(A)|L,W)|L)   (Tower property)

=E(log(L)+log(W)|L)   (True relationship)
=log(L)+E(log(W)|L)   (E(log(L)|L)=L)

 If L and W are independent, E(log(W)|L)= E(log(W))= c,
 Data: E(log(A)|L)=c+log(L),    

 If E(log(W)|L)=d0+d1log(L),  
 Data: E(log(A)|L)=d0+(1+d1)log(L)

4.1.6 Dropping terms (Mean function)
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Conditional Expectation
 Tower property
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Proof:



4.1.6 Dropping terms

 Observational analysis
 Variables are observed via sampling.
 Beyond the control of experimenter.
 Cannot avoid lurking variable

 Variables that are useful but are ignored in 
the regression model

 True relationship:

 Wrong model used (L is lurking variable)
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4.1.6 Dropping terms

 Example of lurking variable
 Study: 

 Y: Maximum running speed
 X: Weight

 What you might expect
 Y=β0 +β1X+e,   β1 <0 

 What you found:



4.1.6 Dropping terms

 Example of lurking variable
 Y: Maximum running speed (m/s)
 X: Weight (lbs)
 L: Height (cm)

 True model

 Wrong model used
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4.1.6 Dropping terms

 Conclusion
 If a simple model is fit to data with complicated structure,

 Estimated parameter may not tell the true effect of a 
variable.

 Therefore, when we get non-null residual plots, beware of
 The non-linear relationship between response and terms
 Useful predictor/terms that are not included in the model 

but are correlated with other terms in the model.
 These variables are called lurking variables
 E.g.

 Data:   E(log(A)|L,W)=0+(1)log(L)+(1)log(W)
 Model:      E(log(A)|L)= β0+ β1log(L)
 W is the lurking variable



4.2 Experimentation v.s. Observation

 Experimental analysis
 Predictors (X) under the control of the experimenter.
 Assignment based on randomization scheme.
 Examples

 Agricultural study: amount of fertilizers, water, space…

 Observational analysis
 Variables are observed via sampling.
 Beyond the control of experimenter.
 Examples

 Agricultural study: Soil fertility, temperature



4.2 Experimentation v.s. Observation

 In observational study
 May have unknown effect of lurking variables.
 Can’t draw causal conclusion

 e.g. Cannot say “Higher weight cause people to run faster!” 
 Only can say about association

 e.g. Can say “High weight  is associated with high speed”

 In experiments
 Have control on every aspect.

 e.g. 
 Randomly assign people to achieve some pre-determined weight  
 Measure their running speed.

 Lurking variables’ effect are averaged out by random assignment.
 Can draw causal conclusion

 e.g. “higher weight causes lower speed”



4.2 Experimentation v.s. Observation
 More example: “Mobile phone decrease brain activity?”

 Observational study
 Find a group of people

 Measure their brain activities (Y)
 Measure their habit of using mobile phone – hours/week (X)
 Regress Brain activities (Y) on time (X)

 Only: “More phone usage is associated with lower brain activities ”
 Experiments

 Find a group of people
 Randomly assign them into groups 

 Randomization sometimes helps average out unknown lurking variables.
 For each group, force them to use mobile phone for different amount of time (X)

 Sometime not ethical to use…
 Measure brain activities (Y)
 Regress Brain activities (Y) on time (X)

 Ok: “More phone usage cause lower brain activities”



4.4 More on R2

 R2 tends to be large if the X 
are dispersed

 R2 tends to be small if the X 
are concentrated

 Therefore, need to be 
careful about sampling!

R2=0.027

R2=0.37

R2=0.24



4.4 More on R2

 R2 is useful to measure goodness of regression fit if 
and only if the scatterplot looks like a sample from a 
bivariate normal distribution (elliptical shaped)

useful

Not useful
• Leverage point

• Curve

• Lurking variable



Summary of Chapter 4

 Result of regression depends on
 which predictors are included in the model
 the relationship between the terms

 Drawing conclusions
 Observational studies – association
 Experiments – causal relationship

 New vocabularies
 Aliased
 Multicollinearity
 Lurking variables


