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Chapter 4

Drawing Conclusion



4.1 Understanding parameter estimates
parameters=(B, B, B, 0?)

E(le) =ﬁ0X0+ﬁ|Xl +"'+ﬁpo

E(Fuel|X) = 154.19 — 4.23 Tax + 0.47 Dlic — 6.14 Income + 18.54 log(Miles)

Unit of Bs:
unit of y/unit of x. (e.g. gallon/$1000 for -6.14)
Unit of 02:
(unit of y)?
Meaning of {3
Rate of change of y on x;, after adjusting for other variables
e.g.
o Fuel decreased by 6.14 gallon when Income increased by $1000
o Fuel increased by 18.54 gallon when Miles is doubled (log,2x=1+log(x))
Meaning of 0%

Variability that can’t be explained by the regression line.




4.1.3 Berkeley Guidance study

e To lllustrate: interpretation of regression depends on other terms

e Background

Study the growth of boys and girls
Y=Soma=Body type -- 1 to 7 (thin to fat)

Predictors:
o WT2 = weight at age 2
o WT9 = weight at age 9
o WT18 = weight at age 18

e First thing to do: Scatterplot
Roughly linear relationship
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4.1.3 Berkeley Guidance study

e Second thing to do: Fit a regression
Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18

e \What?

Heavier at age 2 - thinner now? (-0.116)

Explanations:
o p-value = 0.06, not very significant

o May be due to correlations between the terms
(WT2, WT9 and WT18 are correlated)




4.1.3 Berkeley Guidance study

e Second thing to do: Fit a regression
Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18

e Modification: Define new terms
DW9 = WT9 - WT2 = Weight gain from age 2 to 9
DW18 = WT18 - WT9 = Weight gain from age 9 to 18

Hope the correlation between WT2, DW9 and DW18 are
smaller

Soma=1.59 - 0.011 WT2+0.105 DW9+0.048 DW18
o Now the coefficient -0.0111 is not significant
o Soma depends on DW9 and DW18 but not WT2

e Conclusion:

Interpretation of the effect of a variable depends on other
variables.




4.1.3 Berkeley Guidance study

e Remark: If all five variables are included. We get
Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18+ NA DW9 +NA DW18
Since the model is unidentifiable!

1.

2
o
o

Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18

Soma=1.59-(0.116+b) WT2+(0.056+b) WT9+0.048 WT18 - b DW9
Any b in model 2 is essentially model 1!

Reason: DW9 and DW18 are linear combination of WT2, WT9 and
WT18, they do not contribute to any extra information

In this case the terms are said to be aliased. Some irrelevant terms
need to be dropped out.

Try the R-code

x1=rnorm(100); x2=rnorm(100);
e=rnorm(100,0,0.1);y=1+2*x1+3*x2+e; z=x1+2*x2
Im(y~x1+x2)

Im(y~x1+x2+z)

Im(y~z+x1+x2)



4.1.3 Berkeley Guidance study

Remark:
Aliased:
e Some predictors are linear combinations of other predictors
Multicollinearity:
e Some predictors are highly correlated.
o Perfect multicollinearity (correlation=1) is equivalent to being aliased.
Mathematically,

When two columns of Matrix X are similar (correlated predictors), (X’X)1is
unstable.

Reason: (X’X)’s determinant is close to 0.
Therefore
o Estimator of B (i.e., (X’X)'X’Y) is unstable
o Variance 0?(X’X)" can be very large
Intuitively,
1. Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18
2. Soma=1.59-(0.116+b) WT2+(0.056+b) WT9+0.048 WT18 - b DW9
e Any b in model 2 is essentially model 1!
o Therefore

o Estimator of B, (X’X)'X’Y is unstable
o Variance 0?(X’X)' can be very large

eConclusion: Check for multicollinearity by studying predictors’ correlation!




4.1.6 Dropping terms

e \What happens when a bigger model is fit to
the data from a smaller model?

Data:

o Y=g+ By X+ BXote

Model:

o Y= Bot By Xyt BoXot BaXgt ByXyte
Answer : ,33 = O,,@L1 ~ 0
e What happens when a smaller model is fit to

the data from a bigger model?




4.1.6 Dropping terms

e What happens when a smaller model is
fit to the data from a bigger model?
Data (truth):
o A=Area, L=Length, W=Width
o Area=Length*Width
o E(log(A)|L,W)=0+(1)log(L)+(1)log(W)
Model:
o E(log(A)|L)=By+ B4log(L)




4.1.6 Dropping terms (Mean function)

Data: E(log(A)|L,W)=0+(1)log(L)+(1)log(W)
Model:  E(log(A)|L)= Byt B4log(L)
e From the true model, we get

E(log(A)|L)=E(E(log(A)|L,W)|L) (Tower property)
=E(log(L)+log(W)|L) (True relationship)
=log(L)+E(log(W)IL) (E(log(L)IL)=L)

If L and W are independent, E(log(W)|L)= E(log(W))= c,

» Data: E(log(A)|L)=c+log(L), (3, —c -1

If E(log(W)|L)=dy+d;log(L),

o Data: E(log(A)|L)=dy+(1+d,)log(L) (3, —d,, B —@+d,))




Conditional Expectation

e Tower property
E(E(Y Xy, X)) [ X;)=E(Y]X,)

E(E(Y | X, X,)X,)

_E nyy,xl,xz(y,xl,xz)dy «
fxl,xz(xllxz) i

le’Xz (Xll XZ) j‘ ny’Xl’XZ (y’ Xl’ XZ) dde
1

= f (X5) fr . (X1, X5)

J'yfvxz(y X )
fy, (X3)

=E(Y | X;)




4.1.6 Dropping terms

e Observational analysis

Variables are observed via sampling.
Beyond the control of experimenter.
Cannot avoid lurking variable

o Variables that are useful but are ignored in
the regression model
True relationship:
E(Y|X=x,L=D)=4,+Bx+5|

Wrong model used (L is lurking variable)
E(Y | X =X)=/0,+X+E(L|X =X)

= (B, +0y,) + (B, + 5yy) X if E(L| X =X)=y,+7X




4.1.6 Dropping terms

e Example of lurking variable
Study:

e Y: Maximum running speed
o X: Weight

What you might expect
o Y=B, +B,X+e, (34 <0
What you found:




4.1.6 Dropping terms

e Example of lurking variable
e Y: Maximum running speed (m/s)
o X: Weight (Ibs)
o L: Height (cm)

True model
E(Y| X=w,L=h)=2-0.05w+0.06 h
Wrong model used

E(Y | X =w)=2-0.05w+0.06E(L| X =w)
=2+0.04w  [if E(L| X =w)=1.5w]




4.1.6 Dropping terms

e Conclusion

If a simple model is fit to data with complicated structure,

o Estimated parameter may not tell the true effect of a
variable.

Therefore, when we get non-null residual plots, beware o
e The non-linear relationship between response and terms

o Useful predictor/terms that are not included in the model
but are correlated with other terms in the model.
o These variables are called lurking variables
° Eg
Data: E(log(A)|L,W)=0+(1)log(L)+(1)log(W)
Model:  E(log(A)|L)= By+ B4log(L)
W is the lurking variable




4.2 Experimentation v.s. Observation

e Experimental analysis
Predictors (X) under the control of the experimenter.
Assignment based on randomization scheme.

Examples
o Agricultural study: amount of fertilizers, water, space...

e Observational analysis
Variables are observed via sampling.
Beyond the control of experimenter.

Examples
o Agricultural study: Soil fertility, temperature




4.2 Experimentation v.s. Observation

e |n observational study
May have unknown effect of lurking variables.
Can'’t draw causal conclusion
e e.g. Cannot say “Higher weight cause people to run faster!”

Only can say about association
o e.g. Can say “High weight is associated with high speed”

e |n experiments

Have control on every aspect.

e e€.qg.
« Randomly assign people to achieve some pre-determined weight
o Measure their running speed.

Lurking variables’ effect are averaged out by random assignment.

Can draw causal conclusion
.g. “higher weight causes lower speed”




4.2 Experimentation v.s. Observation

More example: “Mobile phone decrease brain activity?”

Observational study

o Find a group of people
o Measure their brain activities (Y)
o Measure their habit of using mobile phone — hours/week (X)
o Regress Brain activities (Y) on time (X)

o Only: “More phone usage is associated with lower brain activities ”

Experiments

o Find a group of people
o Randomly assign them into groups
Randomization sometimes helps average out unknown lurking variables.
o Foreach group, force them to use mobile phone for different amount of time (X)
Sometime not ethical to use...
o Measure brain activities (Y)
o Regress Brain activities (Y) on time (X)

o Ok: “More phone usage cause lower brain activities”




4.4 More on R?

R? tends to be large if the X
are dispersed

R?Z tends to be small if the X
are concentrated

Therefore, need to be [ i lepaigas
careful about sampling! I =

- 55

' R2=0.027

T T
60 65
(c) Inner M height




4.4 More on R?

e R:Z?is useful to measure goodness of regression fit if
and only if the scatterplot looks like a sample from a
bivariate normal distribution (elliptical shaped)

\

\‘\ useful

Not useful

/ . . Leverage point
* Curve

Predictor or 9

) (e)  Lurking variabl

FIG. 4.3  Six summary graphs. R? is an appropriate measure for a—c, but inappropriate for d—f.




Summary of Chapter 4

e Result of regression depends on
which predictors are included in the model
the relationship between the terms
e Drawing conclusions
Observational studies — association
Experiments — causal relationship
e New vocabularies
Aliased
Multicollinearity
Lurking variables




