Chapter 4

Drawing Conclusion

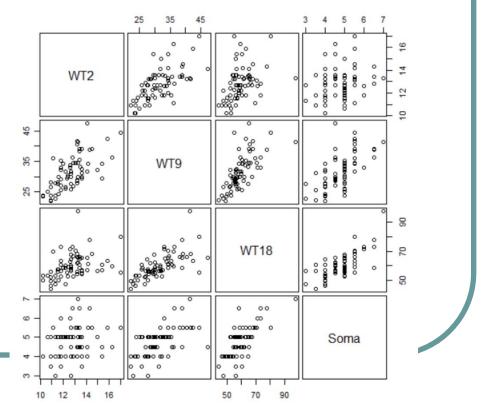
4.1 Understanding parameter estimates parameters=($\beta_{0,} \beta_{1,...} \beta_{p,} \sigma^2$)

$$\mathbf{E}(Y|X) = \beta_0 X_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

 $E(Fuel|X) = 154.19 - 4.23 Tax + 0.47 Dlic - 6.14 Income + 18.54 \log(Miles)$

- Unit of β s:
 - unit of y/unit of x. (e.g. gallon/\$1000 for -6.14)
- Unit of σ^2 :
 - (unit of y)²
- Meaning of β_i :
 - Rate of change of y on x_i, after adjusting for other variables
 - e.g.
 - Fuel decreased by 6.14 gallon when Income increased by \$1000
 - Fuel increased by 18.54 gallon when Miles is doubled $(\log_2 2x=1+\log(x))$
- Meaning of σ^{2:}
 - Variability that can't be explained by the regression line.

- To Illustrate: interpretation of regression depends on other terms
- Background
 - Study the growth of boys and girls
 - Y=Soma=Body type -- 1 to 7 (thin to fat)
 - Predictors:
 - WT2 = weight at age 2
 - WT9 = weight at age 9
 - WT18 = weight at age 18
- First thing to do: Scatterplot
 Roughly linear relationship



- Second thing to do: Fit a regression
 - Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18
- What?
 - Heavier at age 2 \rightarrow thinner now? (-0.116)
 - Explanations:
 - p-value = 0.06, not very significant
 - May be due to correlations between the terms (WT2, WT9 and WT18 are correlated)

- Second thing to do: Fit a regression
 - Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18
- Modification: Define new terms
 - DW9 = WT9 WT2 = Weight gain from age 2 to 9
 - DW18 = WT18 WT9 = Weight gain from age 9 to 18
 - Hope the correlation between WT2, DW9 and DW18 are smaller
 - Soma=1.59 0.011 WT2+0.105 DW9+0.048 DW18
 - Now the coefficient -0.0111 is not significant
 - Soma depends on DW9 and DW18 but not WT2
- Conclusion:
 - Interpretation of the effect of a variable depends on other variables.

Remark: If all five variables are included. We get

- Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18+ NA DW9 +NA DW18
- Since the model is <u>unidentifiable</u>!
 - 1. Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18
 - 2. Soma=1.59-(0.116+b) WT2+(0.056+b) WT9+0.048 WT18 b DW9
 - Any **b** in model 2 is essentially model 1!
 - Reason: DW9 and DW18 are linear combination of WT2, WT9 and WT18, they do not contribute to any extra information
 - In this case the terms are said to be aliased. Some irrelevant terms need to be dropped out.
- Try the R-code
 - x1=rnorm(100); x2=rnorm(100); e=rnorm(100,0,0.1);y=1+2*x1+3*x2+e; z=x1+2*x2
 - $lm(y \sim x1 + x2)$
 - Im(y~x1+x2+z)
 - Im(y~z+x1+x2)

Remark:

- Aliased:
 - Some predictors are linear combinations of other predictors
- Multicollinearity:
 - Some predictors are highly correlated.
 - Perfect multicollinearity (correlation=1) is equivalent to being aliased.
- Mathematically,
 - When two columns of Matrix X are similar (correlated predictors), (X'X)⁻¹ is unstable.
 - Reason: (X'X)'s determinant is close to 0.
 - Therefore
 - Estimator of β (i.e., (X'X)⁻¹X'Y) is unstable
 - Variance $\sigma^2(X'X)^{-1}$ can be very large
- Intuitively,
 - 1. Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18
 - 2. Soma=1.59-(0.116+b) WT2+(0.056+b) WT9+0.048 WT18 b DW9
 - Any b in model 2 is essentially model 1!
 - Therefore
 - Estimator of β, (X'X)-1X'Y is unstable
 - Variance $\sigma^2(X'X)^{-1}$ can be very large

•Conclusion: Check for multicollinearity by studying predictors' correlation!

4.1.6 Dropping terms What happens when a bigger model is fit to the data from a smaller model? Data: • $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + e$ Model: • $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + e$ Answer: $\hat{\beta}_3 \approx 0, \hat{\beta}_4 \approx 0$ What happens when a smaller model is fit to the data from a bigger model?

- What happens when a smaller model is fit to the data from a bigger model?
 - Data (truth):
 - A=Area, L=Length, W=Width
 - Area=Length*Width
 - $E(\log(A)|L,W)=0+(1)\log(L)+(1)\log(W)$

Model:

• $E(\log(A)|L)=\beta_0+\beta_1\log(L)$

4.1.6 Dropping terms (Mean function)

- Data: $E(\log(A)|L,W)=0+(1)\log(L)+(1)\log(W)$
- Model: $E(\log(A)|L) = \beta_0 + \beta_1 \log(L)$
- From the true model, we get
 - E(log(A)|L)=E(E(log(A)|L,W)|L) (Tower property) =E(log(L)+log(W)|L) (True relationship) =log(L)+E(log(W)|L) (E(log(L)|L)=L)
 - If L and W are independent, E(log(W)|L)= E(log(W))= c,
 - Data: E(log(A)|L)=c+log(L), $(\hat{\beta}_0 \rightarrow c, \hat{\beta}_1 \rightarrow 1)$
 - If $E(\log(W)|L)=d_0+d_1\log(L)$,
 - Data: E(log(A)|L)=d_0+(1+d_1)log(L) $(\hat{\beta}_0 \rightarrow d_0, \hat{\beta}_1 \rightarrow (1+d_1))$

Conditional Expectation

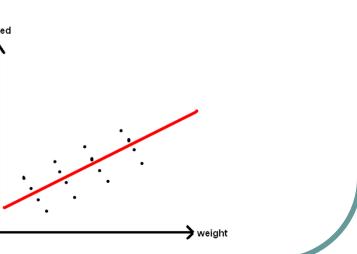
Tower property $E(E(Y | X_1, X_2) | X_2) = E(Y | X_2)$ **Proof:** $E(E(Y \mid X_1, X_2) \mid X_2)$ $= E\left(\int \frac{yf_{Y,X_1,X_2}(y,X_1,X_2)}{f_{X_1,X_2}(X_1,X_2)} dy \left| X_2 \right| \right)$ $= \int \frac{f_{X_1,X_2}(X_1,X_2)}{f_{X_2}(X_2)} \int \frac{yf_{Y,X_1,X_2}(y,X_1,X_2)}{f_{X_1,X_2}(X_1,X_2)} dy dx_1$ $= \int \frac{y f_{Y,X_2}(y,X_2)}{f_{X_2}(X_2)} dy$ $= E(Y \mid X_2)$

- Observational analysis
 - Variables are observed via sampling.
 - Beyond the control of experimenter.
 - Cannot avoid lurking variable
 - Variables that are useful but are ignored in the regression model
 - True relationship: $E(Y | X = x, L = l) = \beta_0 + \beta_1 x + \delta l$
 - Wrong model used (L is lurking variable) $E(Y | X = x) = \beta_0 + \beta_1 x + \delta E(L | X = x)$

 $= (\beta_0 + \delta \gamma_0) + (\beta_1 + \delta \gamma_0) x \qquad \text{if } E(L \mid X = x) = \gamma_0 + \gamma_1 x$

- Example of lurking variable
 - Study:
 - Y: Maximum running speed
 - X: Weight
 - What you might expect
 - $Y = \beta_0 + \beta_1 X + e$, $\beta_1 < 0$

• What you found:



Example of lurking variable

- Y: Maximum running speed (m/s)
- X: Weight (lbs)
- L: Height (cm)

True model

E(Y | X = w, L = h) = 2 - 0.05w + 0.06h

Wrong model used

 $E(Y \mid X = w) = 2 - 0.05w + 0.06E(L \mid X = w)$

= 2 + 0.04w [if E(L | X = w) = 1.5w]

🗕 weight

180

cm

160

cm

140 cm

speed

120

cm

Conclusion

- If a simple model is fit to data with complicated structure,
 - Estimated parameter may not tell the true effect of a variable.

Therefore, when we get non-null residual plots, beware of

- The non-linear relationship between response and terms
- Useful predictor/terms that are not included in the model but are correlated with other terms in the model.
 - These variables are called lurking variables
 - E.g.
 - Data: $E(\log(A)|L,W)=0+(1)\log(L)+(1)\log(W)$
 - Model: $E(\log(A)|L) = \beta_0 + \beta_1 \log(L)$
 - W is the lurking variable

4.2 Experimentation v.s. Observation

Experimental analysis

- Predictors (X) under the control of the experimenter.
- Assignment based on randomization scheme.
- Examples
 - Agricultural study: amount of fertilizers, water, space...
- Observational analysis
 - Variables are observed via sampling.
 - Beyond the control of experimenter.
 - Examples
 - Agricultural study: Soil fertility, temperature

4.2 Experimentation v.s. Observation

In observational study

- May have unknown effect of lurking variables.
- Can't draw causal conclusion
 - e.g. Cannot say "Higher weight cause people to run faster!"
- Only can say about association
 - e.g. Can say "High weight is associated with high speed"

In experiments

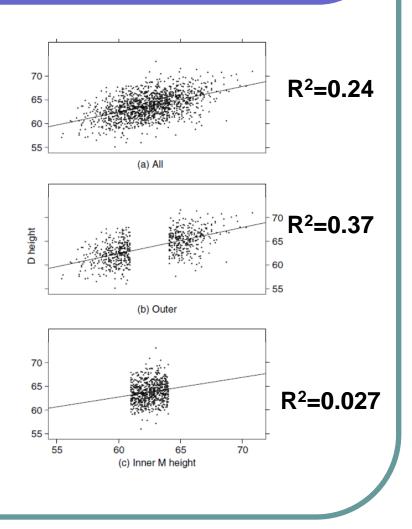
- Have control on every aspect.
 - e.g.
 - Randomly assign people to achieve some pre-determined weight
 - Measure their running speed.
- Lurking variables' effect are averaged out by random assignment.
- Can draw causal conclusion
 - e.g. "higher weight causes lower speed"

4.2 Experimentation v.s. Observation

- More example: "Mobile phone decrease brain activity?"
- Observational study
 - Find a group of people
 - Measure their brain activities (Y)
 - Measure their habit of using mobile phone hours/week (X)
 - Regress Brain activities (Y) on time (X)
 - Only: "More phone usage is associated with lower brain activities '
- Experiments
 - Find a group of people
 - Randomly assign them into groups
 - Randomization sometimes helps average out unknown lurking variables.
 - For each group, force them to use mobile phone for different amount of time (X)
 - Sometime not ethical to use...
 - Measure brain activities (Y)
 - Regress Brain activities (Y) on time (X)
 - Ok: "More phone usage cause lower brain activities"

4.4 More on R^2

- R² tends to be large if the X are dispersed
- R² tends to be small if the X are concentrated
- Therefore, need to be careful about sampling!



4.4 More on R^2

 R² is useful to measure goodness of regression fit if and only if the scatterplot looks like a sample from a bivariate normal distribution (elliptical shaped)

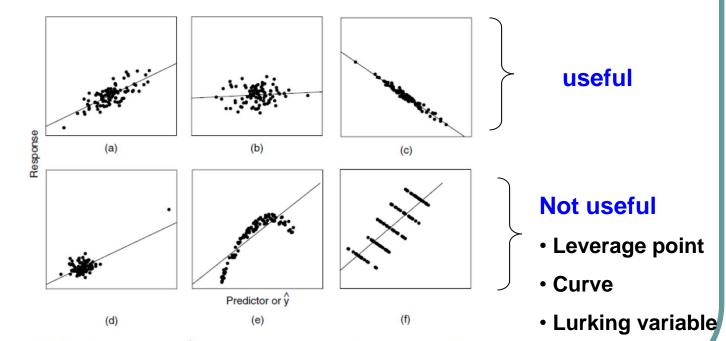


FIG. 4.3 Six summary graphs. R² is an appropriate measure for a-c, but inappropriate for d-f.

Summary of Chapter 4

- Result of regression depends on
 - which predictors are included in the model
 - the relationship between the terms
- Drawing conclusions
 - Observational studies association
 - Experiments causal relationship
- New vocabularies
 - Aliased
 - Multicollinearity
 - Lurking variables