
Chapter 4

Drawing Conclusion



4.1 Understanding parameter estimates
parameters=(β0, β1,… βp, σ2)

 Unit of βs:  
 unit of y/unit of x. (e.g. gallon/$1000 for -6.14)

 Unit of σ2:
 (unit of y)2

 Meaning of βi: 
 Rate of change of y on xi , after adjusting for other variables 
 e.g.

 Fuel decreased by 6.14 gallon when Income increased by $1000
 Fuel increased by 18.54 gallon when Miles is doubled (log22x=1+log(x))

 Meaning of σ2: 

 Variability that can’t be explained by the regression line.



4.1.3 Berkeley Guidance study

 To Illustrate: interpretation of regression depends on other terms

 Background
 Study the growth of boys and girls
 Y=Soma=Body type -- 1 to 7 (thin to fat)
 Predictors:

 WT2 = weight at age 2
 WT9 = weight at age 9
 WT18 = weight at age 18

 First thing to do: Scatterplot
 Roughly linear relationship



4.1.3 Berkeley Guidance study

 Second thing to do: Fit a regression
 Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18

What?
 Heavier at age 2  thinner now? (-0.116) 
 Explanations:

 p-value = 0.06, not very significant
 May be due to correlations between the terms    

(WT2, WT9 and WT18 are correlated)



4.1.3 Berkeley Guidance study

 Second thing to do: Fit a regression
 Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18

 Modification: Define new terms
 DW9 = WT9 - WT2 = Weight gain from age 2 to 9
 DW18 = WT18 - WT9 = Weight gain from age 9 to 18
 Hope the correlation between WT2, DW9 and DW18 are 

smaller
 Soma=1.59 - 0.011 WT2+0.105 DW9+0.048 DW18

 Now the coefficient -0.0111 is not significant
 Soma depends on DW9 and DW18 but not WT2

 Conclusion: 
 Interpretation of the effect of a variable depends on other 

variables.



4.1.3 Berkeley Guidance study

 Remark: If all five variables are included. We get
 Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18+ NA DW9 +NA DW18
 Since the model is unidentifiable! 

1. Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18
2. Soma=1.59-(0.116+b) WT2+(0.056+b) WT9+0.048 WT18 - b DW9
 Any b in model 2 is essentially model 1!
 Reason: DW9 and DW18 are linear combination of WT2, WT9 and 

WT18, they do not contribute to any extra information
 In this case the terms are said to be aliased. Some irrelevant terms 

need to be dropped out.
 Try the R-code

 x1=rnorm(100); x2=rnorm(100); 
e=rnorm(100,0,0.1);y=1+2*x1+3*x2+e; z=x1+2*x2

 lm(y~x1+x2)
 lm(y~x1+x2+z)
 lm(y~z+x1+x2)



4.1.3 Berkeley Guidance study

 Remark: 
 Aliased:

 Some predictors are linear combinations of other predictors
 Multicollinearity: 

 Some predictors are highly correlated.
 Perfect multicollinearity (correlation=1) is equivalent to being aliased.

 Mathematically,
 When two columns of Matrix X are similar (correlated predictors), (X’X)-1 is 

unstable. 
 Reason: (X’X)’s determinant is close to 0.
 Therefore

 Estimator of β (i.e., (X’X)-1X’Y) is unstable 
 Variance σ2(X’X)-1 can be very large 

 Intuitively, 
1. Soma=1.59-0.116 WT2+0.056 WT9+0.048 WT18
2. Soma=1.59-(0.116+b) WT2+(0.056+b) WT9+0.048 WT18 - b DW9
 Any b in model 2 is essentially model 1!
 Therefore

 Estimator of β, (X’X)-1X’Y is unstable 
 Variance σ2(X’X)-1 can be very large

Conclusion: Check for multicollinearity by studying predictors’ correlation!



4.1.6 Dropping terms

 What happens when a bigger model is fit to 
the data from a smaller model?
 Data:

 Y=β0+ β1X1+ β2X2+e
 Model:

 Y= β0+ β1X1+ β2X2+ β3X3+ β4X4+e

 What happens when a smaller model is fit to 
the data from a bigger model?
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4.1.6 Dropping terms

 What happens when a smaller model is 
fit to the data from a bigger model?
 Data (truth): 

 A=Area, L=Length, W=Width
 Area=Length*Width
 E(log(A)|L,W)=0+(1)log(L)+(1)log(W)

 Model:
 E(log(A)|L)=β0+ β1log(L)



 Data:   E(log(A)|L,W)=0+(1)log(L)+(1)log(W)
 Model:      E(log(A)|L)= β0+ β1log(L)

 From the true model, we get
 E(log(A)|L)=E(E(log(A)|L,W)|L)   (Tower property)

=E(log(L)+log(W)|L)   (True relationship)
=log(L)+E(log(W)|L)   (E(log(L)|L)=L)

 If L and W are independent, E(log(W)|L)= E(log(W))= c,
 Data: E(log(A)|L)=c+log(L),    

 If E(log(W)|L)=d0+d1log(L),  
 Data: E(log(A)|L)=d0+(1+d1)log(L)

4.1.6 Dropping terms (Mean function)
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Conditional Expectation
 Tower property
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Proof:



4.1.6 Dropping terms

 Observational analysis
 Variables are observed via sampling.
 Beyond the control of experimenter.
 Cannot avoid lurking variable

 Variables that are useful but are ignored in 
the regression model

 True relationship:

 Wrong model used (L is lurking variable)
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4.1.6 Dropping terms

 Example of lurking variable
 Study: 

 Y: Maximum running speed
 X: Weight

 What you might expect
 Y=β0 +β1X+e,   β1 <0 

 What you found:



4.1.6 Dropping terms

 Example of lurking variable
 Y: Maximum running speed (m/s)
 X: Weight (lbs)
 L: Height (cm)

 True model

 Wrong model used
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4.1.6 Dropping terms

 Conclusion
 If a simple model is fit to data with complicated structure,

 Estimated parameter may not tell the true effect of a 
variable.

 Therefore, when we get non-null residual plots, beware of
 The non-linear relationship between response and terms
 Useful predictor/terms that are not included in the model 

but are correlated with other terms in the model.
 These variables are called lurking variables
 E.g.

 Data:   E(log(A)|L,W)=0+(1)log(L)+(1)log(W)
 Model:      E(log(A)|L)= β0+ β1log(L)
 W is the lurking variable



4.2 Experimentation v.s. Observation

 Experimental analysis
 Predictors (X) under the control of the experimenter.
 Assignment based on randomization scheme.
 Examples

 Agricultural study: amount of fertilizers, water, space…

 Observational analysis
 Variables are observed via sampling.
 Beyond the control of experimenter.
 Examples

 Agricultural study: Soil fertility, temperature



4.2 Experimentation v.s. Observation

 In observational study
 May have unknown effect of lurking variables.
 Can’t draw causal conclusion

 e.g. Cannot say “Higher weight cause people to run faster!” 
 Only can say about association

 e.g. Can say “High weight  is associated with high speed”

 In experiments
 Have control on every aspect.

 e.g. 
 Randomly assign people to achieve some pre-determined weight  
 Measure their running speed.

 Lurking variables’ effect are averaged out by random assignment.
 Can draw causal conclusion

 e.g. “higher weight causes lower speed”



4.2 Experimentation v.s. Observation
 More example: “Mobile phone decrease brain activity?”

 Observational study
 Find a group of people

 Measure their brain activities (Y)
 Measure their habit of using mobile phone – hours/week (X)
 Regress Brain activities (Y) on time (X)

 Only: “More phone usage is associated with lower brain activities ”
 Experiments

 Find a group of people
 Randomly assign them into groups 

 Randomization sometimes helps average out unknown lurking variables.
 For each group, force them to use mobile phone for different amount of time (X)

 Sometime not ethical to use…
 Measure brain activities (Y)
 Regress Brain activities (Y) on time (X)

 Ok: “More phone usage cause lower brain activities”



4.4 More on R2

 R2 tends to be large if the X 
are dispersed

 R2 tends to be small if the X 
are concentrated

 Therefore, need to be 
careful about sampling!

R2=0.027

R2=0.37

R2=0.24



4.4 More on R2

 R2 is useful to measure goodness of regression fit if 
and only if the scatterplot looks like a sample from a 
bivariate normal distribution (elliptical shaped)

useful

Not useful
• Leverage point

• Curve

• Lurking variable



Summary of Chapter 4

 Result of regression depends on
 which predictors are included in the model
 the relationship between the terms

 Drawing conclusions
 Observational studies – association
 Experiments – causal relationship

 New vocabularies
 Aliased
 Multicollinearity
 Lurking variables


