
Chapter 2

Simple Linear Regression



Motivation

 The Simplest model relating Response Y and Predictor X.
 Simple Linear Regression

 Mean function:
 E(Y|X=x)= β0 + β1 x

 Variance function
 Var(Y|X=x)=σ2

 Parameters to estimates: 
 β0 = intercept (Expectation of Y when X=0)
 β1 = slope (changes in E(Y) for 1 unit increase of X)
 σ2 = error variance 



Simple Linear Regression
 Instead of expressing E(Y|X) and Var(Y|X) separately, we 

may say
 yi= β0 + β1xi+ei

 E(ei)= 0,     Var(ei)= σ2,    ei’s are i.i.d.
 Compare with 

 Mean function: E(Y|X=x)= β0 + β1 x
 Variance function: Var(Y|X=x)=σ2

 ei : statistical error
 Vertical distance between y and the “truth” E(Y|X=xi) 
 ei=yi-β0 - β1 xi=Random error component

 We can assume x is known and e, y are random



How to find the estimators?

 yi= β0 + β1xi+ei

 Vary β0 , β1 to find the best fit line

What’s meant by the “best fit”?



Method of Least Square.
 Residual sum of squares

 Residual = vertical dist b/w yi and its fitted 
value on the fitted regression line

We find (β0 , β1 ) that minimize RSS

How to find the estimators?



Least Squares estimators

Minimize Residual sum of squares

 Step 1. Differentiate RSS w.r.t. β0 & β1

 Step 2. Solving 2 equations 2 unknowns
 Answer:

(see textbook P.273)



Example – Forbes Data
Measure pressure from boiling point of water 

Results:



Least Squares estimator
 Notations used in the book

Sample mean Sum of squares

Estimators

Fitted value for case i

residual for case i



Least Squares estimator
 Hat is important!!!

 Be familiar with the terms: observed data, parameter, 
parameter estimates, error, residual, fitted value…

 With hat = Known estimated value 
= Involve data only

 No hat = Observed/Unknown true value



How to estimate σ2 ?

 There are 3 parameters
 yi= β0 + β1xi+ei

 E(ei)= 0,     Var(ei)= σ2,    ei’s are i.i.d.
 Note that σ2 =Var(ei)=E(e2

i),
 Looking at           helps estimate σ2

 Fact:   E(       ) = (n-2) σ2

 We estimate σ2 by



How to estimate σ2 ?

 Computations




 Therefore   



How to estimate σ2 ?

 Forbe’s data   



Properties of least squares estimators

1.


2. The fitted line passes through (x,y) 
 Check the derivative of RSS w.r.t. β0

3. The sum of residuals=0 (not errors!)
 Check the derivative of RSS w.r.t. β0

4. The estimators are unbiased 
(Expectation=true value)




Variance of least squares estimators

Unknown True Variance                              Estimators of Variance

See textbook p.273-275



2.6 Comparing models:
Analysis of variance (ANOVA)
 Regression is the study of dependence of variables

 yi= β0 + β1xi+ei
 β1=0  x and y are independent
 β1≠0  x and y are dependent

 Question:
 Are x and y dependent?



2.6 Comparing models:
Analysis of variance (ANOVA)
 Regression is the study of dependence of variables

 yi= β0 + β1xi+ei
 β1=0  x and y are dependent
 β1≠0  x and y are not dependent

 Question:
 Are x and y dependent?

 Answer:
 Method 1) test whether β1=0 
 Method 2) Compare the two models

 E(y|x)=β0 i.e.   yi= β0 +ei

 E(y|x)=β0 + β1x   i.e.   yi= β0 + β1xi+ei



2.6 Comparing models:
Analysis of variance (ANOVA)
 Analysis of variance (ANOVA) is a method that 

compares two models of mean functions
 E(y|x)=β0

 E(y|x)=β0+ β1x   

 For the first model:  E(y|x)=β0
 β 0 can be estimated by minimizing 

 differentiate w.r.t. β 0 gives

 Residual sum of square RSS is



2.6 Comparing models:
Analysis of variance (ANOVA)
 Compare

 E(y|x)=β0

 E(y|x)=β0+ β1x   

 For the first model:  E(y|x)=β0
 Residual sum of square, RSS1, is

 For the second model:  E(y|x)=β0 +β1x 
 Residual sum of square, RSS2, is

 RSS1>RSS2… Is the 2nd model always better? 



2.6 Comparing models:
Analysis of variance (ANOVA)
 RSS1 for E(y|x)=β0  SYY
 RSS2 for E(y|x)=β0 +β1x   
 The second model is useful only if RSS1>>>RSS2

 Difference sum of square due to regression (SSreg)
 SSreg = RSS1-RSS2=
 Large SSreg  2nd model explains much more variation
 How large is large?



 Difference sum of square due to regression (SSreg)
 SSreg = RSS1-RSS2=
 Large SSreg  2nd model explains much more variation
 How large is large?

 Study the distribution of SSreg under model 1 (idea)
 After some algebra, 
 By CLT,                  is approximately N(0,σ2)
 SSreg ~ σ2 (N(0,1))2 = σ2 Х2

1 (Chi-square with d.f. 1)
 ~ σ2 Х2

n-2/(n-2)   (Chi-square with d.f. n-2)
 SSreg/σ2 ~ Х2

1 /(Х2
n-2/(n-2))=F(1,n-2) 

2.6 Comparing models:
Analysis of variance (ANOVA)



 Statistical facts we have used:
 Degree of freedom = number of values in the final 

calculation of a statistic that are free to vary
 : d.f.=n,  each of the yi is free to vary
 : d.f.=n-1, there is a constraint:
 : d.f.=n-2, there are 2 constraints, 

 About distributions
 If z~N(0,1), then z2~X2

1 (Chi-square with d.f. 1)
 If zi~N(0,1), then z1

2+ z2
2+…+ zk

2 ~ X2
k (Chi-square with d.f. k)

 If Y1~ X2
m and Y2~ X2

n , then [Y1/m]/[Y2/n] ~F(m,n)

2.6 Comparing models:
Analysis of variance (ANOVA)



 ANOVA table: a break-down of squares (variation)

2.6 Comparing models:
Analysis of variance (ANOVA)

Variation of the 
data

Variation not 
explained by 
regression 

Variation 
explained by 
regression  



 ANOVA table: a break-down of squares (variation)

2.6 Comparing models:
Analysis of variance (ANOVA)

F test for Regression

~ F(1,n-2) under NH

p.d.f. of F(1,n-2)

FIdea: • larger F means regression is effective (large SSreg)

• Under NH, F~F(1,n-2), it is unlikely to be very big

• If the red area (α) is small, F is large  NH is suspicious  
α is the p-value = P( observing a test stat more extreme than F)                      

If p-value is small, e.g. <0.05, we reject the NH



 Forbe’s data

2.6 Comparing models:
Analysis of variance (ANOVA)



 Forbe’s data

2.6 Comparing models:
Analysis of variance (ANOVA)



 Definition

 Proportion of variability explained by regression
 Scale-free one number summary of strength of 

relationship between x and y.
 Connections to sample correlation r2

xy

 R2 is always between 0 and 1. 
 Close to 1 good fit
 Close to 0 bad fit

2.7 Coefficient of Determination, R2



2.8 Confidence intervals and tests

 Regression model: 
 E(Y|X=x)= β0 + β1 x

 Quantities of interests
 Intercept: β0

 Slope: β1

 Prediction: If we observe x*, what is the y?
 Fitted value: E(Y|X=x) for different values of x

 Confidence intervals give estimates for 
the above quantities of interests



2.8 Confidence intervals and tests

 Statistics facts:
 If zi are independent, then z1+ z2+…+ zk ~ Normal 

(Central limit theorem)
 If zi~iid N(0,1) , then z1

2+ z2
2+…+ zk

2 ~ X2
k

 If Z~N(0,1) and Y~ X2
m , then Z/√(Y/m) ~ t(m)

 Recall what we have shown




 ~ σ2 Х2
n-2/(n-2)   (Chi-square with d.f. n-2)



2.8 Confidence intervals and tests

 Intercept: β0

 Testing:

 (1-α)x100% confidence interval:



2.8 Confidence intervals and tests

 slope: β1

 Testing:

 (1-α)x100% confidence interval:



2.8 T-test = F-test in testing β1=0!

 A common test of slope 
 NH: β1=0
 AH: β1≠0

 It is equivalent to comparing the models
 yi= β0 +ei

 yi= β0 + β1xi+ei

 F-stat=(t-stat)2 

 F(1,m)= X2
1/[X2

m/m]=N(0,1)2/[X2
m/m] =t(m)2



 Prediction: If we observe x*, what is the y*?
 New observation (x*,?): 
 Prediction:
 Prediction uncertainty 



 (predicting a particular observation incorporate the error, giving σ2)

 Prediction interval for y* (pointwise)

2.8 Confidence intervals and tests

 exVarxyyVar oo  *11*** )ˆ()ˆ()|~( 

This is the notation used
in the textbook. It should be 

understood as



 Fitted value: E(Y|X=x) for different values of x
 What is the mean daughter height if mothers height=x? 
 Fitted value: E(Y|X=x)=β0+β1x
 Estimation: 
 Estimation uncertainty: 

 It is not a prediction, no error term, so no σ2

 Confidence interval for E(Y|X=x): (pointwise)

 Confidence band for E(Y|X=x): (for entire line)

2.8 Confidence intervals and tests

 xVarxyxYEVar oo )ˆ()ˆ()|ˆ)|(( 11  



 Confidence interval (at each point x)
 For each of x, P(E(Y|X=x) in C.I.)=1-α

 Confidence band (for the entire line)
 P(For all x, E(Y|X=x) in C.B.)= 1-α

2.8 Confidence intervals and bands

For n C.I.s, n(1-α) of them 
covers the true value at x 

For n C.B.s, n(1-α) of 
them covers the whole 

true regression line

x x

xx





 Check the goodness of regression fit
 Common plots:


 Residuals v.s. predictor         Residuals v.s. fitted value

2.9 Residuals



2.9 Residuals



2.9 Residuals

 Null plot: 
 Mean function = 0
 Variance function = constant
 No separated points 

 A null plot is a 
good residual plot



Chapter 2 summary
 Estimators

 Variances

 ANOVA table

 Tests for dependence of x and y
 F-test:
 T-test



 Confidence band for E(Y|X=x):
 Confidence interval for E(Y|X=x):
 Prediction interval for new obs:


