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Chapter 10

ariable Selection



10.1. The active terms

e Variable selection

Aim: ldentify the correct model
o select the useful predictor
o Ignore the non-informative terms

Y v.s. X;, Xy, ... Xogo
o Divide X=(X;, X,, ... Xgqg) into two sets, X,, and X,
o sothat E(Y|X) = E(Y|X,)=XABn

o X, = active terms

o X, =inactive terms




10.1. Active terms and multicollinearity

e Multicollinearity

some terms can be approximated by linear
combination of the other terms.
o e.g. X;=cCytc, X+C,X,+C, X, +CsXs
In this case, X'X is close to singular (det=0),
o A=(X'X)X'Y and Var(f)=o?(X'X)™
can be huge.

e We should avoid including all variables with
multicollinearity in the regression model
o e.9. set X,=(X;,X5,X4,X5),
o X;=(X3), since X; can be explained by X,,X,,X,,Xs




10.1. Active terms and multicollinearity

e Remarks

Multicollinearity

e some terms can be approximated by linear combination
of the other terms.

e (X’X) is close to non-singular. Inverse exists but unstable
Perfect/Exact multicollinearity or Aliased

o some term is exactly expressed by linear combination of
the other terms.

o (X’X) is singular. Inverse does not exist.




10.1. Active terms and multicollinearity

e How to detect multicollinearity?
Check (X'X)-1?

e problem: don’t know how large is large.

A better method: R?, the coefficient of
determination for the regression

Xj= CO+C1X1 +. .. +Cj_1Xj_1 +Cj+1xj+1 + . +Cpxp+e

» R?=1 - multicollinearity, i.e. some terms can be
approximated by linear combination of the other terms.




10.1. Active terms and multicollinearity

e Relationship between var(s,) and R
Using the idea of Added Variable Plot

Let  Xo=( X; X, X3 X0y X)), Ho = Xo(XoXo) " X
For Y =Xofo+ X5 +€,
,31. = Regression coefficient between (I —H; )Y and (I - H, )X
= (X', (1 =Ho )X, J" X", (1 =Hg )Y
Var(4,)=o?(X', (1 =Ho )X, )
For the regression
X;=C+C X +..+C;, X, +

j+2

X +CX

j+1
X;=XsCo +E,
RSS L X' (I=Hg)X,

we have R2 —]1-— =
TSS SX X,




10.1. Variance Inflation Factor (VIF)

e Relationship between var(g)) and R;
Var(8,) = o?(X", (1 =Hg )X, )"
X' (1 =Hg )X,
CSX (X,

2 Compare to

O

Therefore, Valf(ﬂ-)—(1 RZ)SX X, |Var () =

Variance Inflation Factor VIIJ-'
1

VIF = >
(1_Rj)

¢ Increase in Variance due to multicollinearity
o Big VIF or RJ-2 iImplies multicollinearity

o In practice, R?2> 0.7 is regarded as strong correlation
o Becareful if R2>0.7 or VIF >1/0.3 = 3.33




10.1. Active terms and multicollinearity

e Example

x1=c(1,3,2,4,5,2,3,1,0,5)

x2=c(8,9,7,2,5,9,6,4,4,1)

x3=2*x1-5*"x2+rnorm(10,0,0.1)

x4=c(3,1,4,2,7,3,4,5,6,3)

y=3+x1+2*x2+2*x4+rnorm(10,0,0.5)

summary(lm(y~x1+x2+x3))

#Find VIF
Rj1=summary(Im(x1~x2+x3+x4))$r.squared; VIF1=1/(1-Rj1)
Rj2=summary(Im(x2~x1+x3+x4))$r.squared; VIF2=1/(1-Rj2)
Rj3=summary(Im(x3~x1+x2+x4))$r.squared; VIF3=1/(1-Rj3)
Rj4=summary(Im(x4~x1+x2+x3))$r.squared; VIF4=1/(1-Rj4)
print(rbind(c("Rj",Rj1,Rj2,Rj3,Rj4),c("VIF" VIF1,VIF2,VIF3,VIF4)))

#Modified fitting by deleting either one of x1,x2,x3
summary(lm(y~x1+x2+x4))
summary(lm(y~x2+x3+x4))
summary(lm(y~x1+x3+x4))




10.2. Automatic Variable Selection procedure

e For all possible candidate models, we compute
Akaike Information Criteria (AIC)

RSS Number of parameters in the model
n

Bayesian Information Criteria (BIC)

e.g. ptlin regression

nlog(f$$ij+-pclog(n)

Mallow’s Cp Statistics
RSS

~2

Predicted residual sum of Square (PRESS)
2 {yi - 9i(i)}2 = Z{l—-h }

+2p.—n

i=1 i=1 i




10.2. Automatic Variable Selection procedure

* AIC BIC C, PRESS

RSS RSS RSS n n
=2 logl —> |+ pe | _ TR
nlog( - ]+2pc nog( - j+pc 9M| 1= +2p =0 Sy, ~ G ) =>

i=1

e Smaller value implies a better model

For AIC, BIC, C, they have a common structure:

lack of fit + penalty for model complexity

e Larger model - Smaller RSS, Bigger penalty
e Smaller model = Larger RSS, Smaller penalty
e When p is fixed, they yield the same result (min RSS)

For PRESS, no penalty IS need since different
Udld diI€ USCJ |C 1J Aalll € Ildl.‘.




10.2. Automatic Variable Selection procedure

e AIC BIC PRESS

RSS RSS n n 5 7
— log| —> |+ pe | 5 5] &
nlog( n ]-l-ZpC ! Og( n j+ 2. ol G Z{yi - yi(i)}2 - {1—hii}

e \What to do in practice?
Find the 4 best models according to each criteria

Usually they yield similar results, otherwise....
e need to incorporate subject knowledge




10.2. Model Selection in Practice

When you have Y and X,, X, ... Xp

For each possible model (e.g
Y=BotB1Xq, Y=BotBXq+... +B X, Y=B,.1X, 1B, etc)
» Find AIC, BIC, C,, PRESS

o Report the best model (smallest value) w.r.t each criteria

e How many possible models ? (how many combinations)
o 2P
o If p=20, 220=1048576
o If a regression takes 1s, how long does it take for model selection
Solutions
e Forward Selection

e Backward Selection




10.2. Model Selection in Practice

Forward Selection

Set-up
o K=Total number of terms may be added
e i=1, L=1 (current number of terms, first start with intercept only)
e V, (current criterion values)

Step |
o Each of the time, add one term beyond the current model
o Obtain K+1-L criterion values
o Stop if

o Allterms are included
o All K+1-L criterion values are greater than V,, i.e. additional terms does
not improve the fitting.
o Set V., be the minimum of the K+1-L criterion values. Add the
corresponding term to the current model, go to Step i+1




10.2. Model Selection in Practice

e Forward Selection
Each time add 1 variable, until no improvement

e Example

#Data
set.seed(1);x1=c(1,3,2,4,5,2,3,1,0,5); x2=¢(8,9,7,2,5,9,6,4,4,1) ;
x3=2*x1-5*x2+rnorm(10,0,0.1) ; x4=c(3,1,4,2,7,3,4,5,6,3)
y=3+x1+2*x2+2*x4+rnorm(10,0,0.5)
n=10; V,= n*log(sum(Im(y~1)$residuals”*2)/n)+2*1=35.49
# Step 1: (current model y= 3, V,=35.49)
o AlC1a=n*log(sum(Im(y~x1)$residuals?2)/n)+2*(1+1) AlIC
o AIC1b=n*log(sum(Im(y~x2)$residuals?2)/n)+2*(1+1) RSS
AlIC1c=n*log(sum(Im(y~x3)$residuals*2)/n)+2*(1+1) [N Iog(—j +2 Pc
AlIC1d=n*log(sum(Im(y~x4)$residuals”2)/n)+2*(1+1) n
print(c(AIC1a, AIC1b, AlC1c, AlC1d))
V,=29.30, add x2,




10.2. Model Selection in Practice

Forward Selection
Each time add 1 variable, until no improvement

Example

# Step 2: (current model y= B, +B,X,, V,=29.30)
o AIC2a=n*log(sum(Im(y~x2+x1)$residuals”2)/n)+2*(2+1)
o AIC2b=n*log(sum(Im(y~x2+x3)$residuals”2)/n)+2*(2+1)
o AIC2c=n*log(sum(Im(y~x2+x4)$residuals?2)/n)+2*(2+1)
o print(c(AlC2a, AlC2b, AlC2c))
o V,=13.85, Add x4
# Step 3: (current model y= B, +B,X, +B,X,, V,=13.85)
o AIC3a=n*log(sum(Im(y~x2+x4+x1)$residuals?2)/n)+2*(3+1)
o AIC3b=n*log(sum(Im(y~x2+x4+x3)$residuals”?2)/n)+2*(3+1)
o print(c(AlC3a, AlIC3b))
e V;=-9.30, Add x1




10.2. Model Selection in Practice

Forward Selection
Each time add 1 variable, until no improvement

Example
# Step 4: (current model y= B, + B, X, +B,X, +B,X,, V5=-9.30)
o AlC4a=n*log(sum(Im(y~x2+x4+x1+x3)$residuals”2)/n)+2*(4+1)
o print(c(AlC4a))
e V,=-8.56 >-9.30= V,. STOP, without adding x3
e Conclusion

e The model y= B+ Bx;+B,x,*+B,X, is the best according to AIC using
Forward Selection.




10.2. Model Selection in Practice

Backward Selection

Set-up
o K=Total number of terms may be added
e i=1, L=K+1 (current number of terms, first fit all terms)
e V, (current criterion values)

Step |
o Each of the time, remove one term from the current model
e Obtain L-1 criterion values
o Stop if

o Allterms are removed
o All L-1 criterion values are greater than V,, i.e. removing terms worsen
the fitting.
o Set V., be the minimum of the L-1 criterion values. Remove
the corresponding term from the current model, go to Step i+




10.2. Model Selection in Practice

Backward Selection
Each time delete 1 variable, until no improvement

Example

#Data
set.seed(2);x1=c(1,3,2,4,5,2,3,1,0,5); x2=¢(8,9,7,2,5,9,6,4,4,1) ;
x3=2*x1-5*x2+rnorm(10,0,0.1) ; x4=c(3,1,4,2,7,3,4,5,6,3)
y=3+x1+2*x2+2*x4+rnorm(10,0,0.5)
n=10; V,= n*log(sum(Im(y~x1+x2+x3+x4)$residuals’*2)/n)+2*(4+1)=-4.48
# Step 1: (current model y= B, + B4 X +B,X, +B3X;5 +B,4X,, V= -4.48)
o AlC1a=n*log(sum(Im(y~x2+x3+x4)$residuals”?2)/n)+2*(3+1)
AlIC1b=n*log(sum(Im(y~x1+x3+x4)$residuals”2)/n)+2*(3+1)
AlC1c=n*log(sum(Im(y~x1+x2+x4)$residuals*2)/n)+2*(3+1)
AlIC1d=n*log(sum(Im(y~x1+x2+x3)$residuals”2)/n)+2*(3+1)
print(c(AIC1a, AIC1b, AlC1c, AlC1d))
V,=-6.46, remove x1,




10.2. Model Selection in Practice

Backward Selection
Each time delete 1 variable, until no improvement

Example

# Step 2: (current model y= B, +B,X, +B3X; +B,X,, V= -6.40)

o AlIC2a=n*log(sum(Im(y~x3+x4)$residuals”2)/n)+2*(2+1)

o AIC2b=n*log(sum(Im(y~x2+x4)$residuals”2)/n)+2*(2+1)
AIC2c=n*log(sum(Im(y~x2+x3)$residuals”2)/n)+2*(2+1)
print(c(AIC2a, AIC2b, AlC2c))

V,=16.10> -6.46 =V,. STOP, without removing any variable
Conclusion

e The model y= B, +B,x,+BsX;+B,X, is the best according to AIC using
Backward Selection.




e Regression: Relationship b/w variables
Y=X[B+e
o Least Sq Est 3, Testif =0, C.I. for3, PredictY
o Compare between models by F-test

Diagnostic check — Residual/scatter/AV plot

Improvement
o Non-constant variance -- WLS

o Curve relationship -- 1) Poly Reg 2) Transform
o Check QOutlier— 1) T-test 2) Cook’s distance

Variable selection: 1)AIC. 2)BIC. 3)C,. 4)Press




