
Chapter 10

Variable Selection



10.1. The active terms

 Variable selection
 Aim: Identify the correct model 

 select the useful predictor
 Ignore the non-informative terms

 Y v.s. X1, X2, … X999
 Divide X=(X1, X2, … X999) into two sets, XA, and XI, 
 so that    E(Y|X) = E(Y|XA)=XAβA

 XA = active terms
 XI =inactive terms



10.1. Active terms and multicollinearity

 Multicollinearity
 some terms can be approximated by linear 

combination of the other terms.
 e.g.    X3 ≈ c0+c1X1+c2X2+c4X4+c5X5

 In this case, X’X is close to singular (det=0), 


can be huge.
 We should avoid including all variables with 

multicollinearity in the regression model
 e.g.  set XA=(X1,X2,X4,X5), 
 XI=(X3), since X3 can be explained by X1,X2,X4,X5

121 )'( )ˆVar(     and      ')'(ˆ   XXYXXX 



10.1. Active terms and multicollinearity

 Remarks
 Multicollinearity

 some terms can be approximated by linear combination 
of the other terms.

 (X’X) is close to non-singular. Inverse exists but unstable
 e.g.    X3 ≈ c0+c1X1+c2X2+c4X4+c5X5

 Perfect/Exact multicollinearity or Aliased
 some term is exactly expressed by linear combination of 

the other terms.
 (X’X) is singular. Inverse does not exist.
 e.g.    X3 = c0+c1X1+c2X2+c4X4+c5X5



10.1. Active terms and multicollinearity

 How to detect multicollinearity?
 Check (X’X)-1?

 problem:  don’t know how large is large.

 A better method: R2
j, the coefficient of 

determination for the regression
Xj= c0+c1X1+…+cj-1Xj-1+cj+1Xj+1+…+cpXp+e

 R2
j≈1  multicollinearity, i.e. some terms can be 

approximated by linear combination of the other terms.



10.1. Active terms and multicollinearity

 Relationship between
 Using the idea of Added Variable Plot 


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10.1. Variance Inflation Factor (VIF)

 Relationship between


 Therefore,
 Variance Inflation Factor (VIF) 

 Increase in Variance due to multicollinearity
 Big VIF or Rj

2 implies multicollinearity
 In practice, R2 > 0.7 is regarded as strong correlation

 Becareful if Rj
2 > 0.7  or VIF > 1/0.3 = 3.33
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10.1. Active terms and multicollinearity
 Example

x1=c(1,3,2,4,5,2,3,1,0,5)
x2=c(8,9,7,2,5,9,6,4,4,1)
x3=2*x1-5*x2+rnorm(10,0,0.1)
x4=c(3,1,4,2,7,3,4,5,6,3)
y=3+x1+2*x2+2*x4+rnorm(10,0,0.5)
summary(lm(y~x1+x2+x3))
#Find VIF

Rj1=summary(lm(x1~x2+x3+x4))$r.squared; VIF1=1/(1-Rj1)
Rj2=summary(lm(x2~x1+x3+x4))$r.squared; VIF2=1/(1-Rj2)
Rj3=summary(lm(x3~x1+x2+x4))$r.squared; VIF3=1/(1-Rj3)
Rj4=summary(lm(x4~x1+x2+x3))$r.squared; VIF4=1/(1-Rj4)
print(rbind(c("Rj",Rj1,Rj2,Rj3,Rj4),c("VIF",VIF1,VIF2,VIF3,VIF4)))

#Modified fitting by deleting either one of x1,x2,x3
summary(lm(y~x1+x2+x4))
summary(lm(y~x2+x3+x4))
summary(lm(y~x1+x3+x4))



10.2. Automatic Variable Selection procedure

 For all possible candidate models, we compute
 Akaike Information Criteria (AIC)

 Bayesian Information Criteria (BIC)

 Mallow’s Cp Statistics

 Predicted residual sum of Square (PRESS)
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10.2. Automatic Variable Selection procedure

 AIC               BIC                Cp                  PRESS

 Smaller value implies a better model
 For AIC, BIC, Cp, they have a common structure:

lack of fit  +  penalty for model complexity
 Larger model  Smaller RSS, Bigger penalty
 Smaller model  Larger RSS, Smaller penalty
 When p is fixed, they yield the same result (min RSS)

 For PRESS, no penalty is need since different 
data are used for fitting and estimating errors
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10.2. Automatic Variable Selection procedure

 AIC               BIC                Cp                  PRESS

 What to do in practice?
 Find the 4 best models according to each criteria
 Usually they yield similar results, otherwise….

 need to incorporate subject knowledge
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10.2. Model Selection in Practice

 When you have Y and X1, X2, … Xp
 For each possible model (e.g. 

y=βo+β1x1, y=βo+β1x1+…+βpxp , y=βp-1xp-1+βpxp etc)
 Find AIC, BIC, Cp, PRESS
 Report the best model (smallest value) w.r.t each criteria
 How many possible models ? (how many combinations)

 2p

 If p=20, 220=1048576
 If a regression takes 1s , how long does it take for model selection?

 Solutions
 Forward Selection
 Backward Selection



10.2. Model Selection in Practice

 Forward Selection
 Set-up

 K=Total number of terms may be added
 i=1, L=1 (current number of terms, first start with intercept only)
 Vi (current criterion values)

 Step i
 Each of the time, add one term beyond the current model
 Obtain K+1-L criterion values 
 Stop if 

 All terms are included
 All K+1-L criterion values are greater than Vi, i.e. additional terms does 

not improve the fitting. 

 Set Vi+1 be the minimum of the K+1-L criterion values. Add the 
corresponding term to the current model, go to Step i+1



10.2. Model Selection in Practice

 Forward Selection
 Each time add 1 variable, until no improvement 

 Example
 #Data
 set.seed(1);x1=c(1,3,2,4,5,2,3,1,0,5);  x2=c(8,9,7,2,5,9,6,4,4,1) ;  
 x3=2*x1-5*x2+rnorm(10,0,0.1) ; x4=c(3,1,4,2,7,3,4,5,6,3)
 y=3+x1+2*x2+2*x4+rnorm(10,0,0.5)
 n=10; V0= n*log(sum(lm(y~1)$residuals^2)/n)+2*1=35.49
 # Step 1: (current model y= βo, V0=35.49)

 AIC1a=n*log(sum(lm(y~x1)$residuals^2)/n)+2*(1+1)
 AIC1b=n*log(sum(lm(y~x2)$residuals^2)/n)+2*(1+1)
 AIC1c=n*log(sum(lm(y~x3)$residuals^2)/n)+2*(1+1)
 AIC1d=n*log(sum(lm(y~x4)$residuals^2)/n)+2*(1+1)
 print(c(AIC1a, AIC1b, AIC1c, AIC1d))
 V1=29.30, add x2, 
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10.2. Model Selection in Practice

 Forward Selection
 Each time add 1 variable, until no improvement 

 Example
 # Step 2: (current model y= βo +β2X2, V1=29.30)

 AIC2a=n*log(sum(lm(y~x2+x1)$residuals^2)/n)+2*(2+1)
 AIC2b=n*log(sum(lm(y~x2+x3)$residuals^2)/n)+2*(2+1)
 AIC2c=n*log(sum(lm(y~x2+x4)$residuals^2)/n)+2*(2+1)
 print(c(AIC2a, AIC2b, AIC2c))
 V2=13.85, Add x4

 # Step 3: (current model y= βo +β2X2 +β4X4, V2=13.85)
 AIC3a=n*log(sum(lm(y~x2+x4+x1)$residuals^2)/n)+2*(3+1)
 AIC3b=n*log(sum(lm(y~x2+x4+x3)$residuals^2)/n)+2*(3+1)
 print(c(AIC3a, AIC3b))
 V3= -9.30, Add x1



10.2. Model Selection in Practice

 Forward Selection
 Each time add 1 variable, until no improvement 

 Example
 # Step 4: (current model y= βo + β1X1 +β2X2 +β4X4, V3= -9.30)

 AIC4a=n*log(sum(lm(y~x2+x4+x1+x3)$residuals^2)/n)+2*(4+1)
 print(c(AIC4a))
 V4= -8.56 > -9.30= V3. STOP, without adding x3
 Conclusion

 The model    y= βo+ β1x1 +β2x2+β4x4    is the best according to AIC using 
Forward Selection.



10.2. Model Selection in Practice

 Backward Selection
 Set-up

 K=Total number of terms may be added
 i=1, L=K+1 (current number of terms, first fit all terms)
 Vi (current criterion values)

 Step i
 Each of the time, remove one term from the current model
 Obtain L-1 criterion values 
 Stop if 

 All terms are removed
 All L-1 criterion values are greater than Vi, i.e. removing terms worsen 

the fitting. 

 Set Vi+1 be the minimum of the L-1 criterion values. Remove 
the corresponding term from the current model, go to Step i+1



10.2. Model Selection in Practice

 Backward Selection
 Each time delete 1 variable, until no improvement 

 Example
 #Data
 set.seed(2);x1=c(1,3,2,4,5,2,3,1,0,5);  x2=c(8,9,7,2,5,9,6,4,4,1) ;  
 x3=2*x1-5*x2+rnorm(10,0,0.1) ; x4=c(3,1,4,2,7,3,4,5,6,3)
 y=3+x1+2*x2+2*x4+rnorm(10,0,0.5)
 n=10; V0= n*log(sum(lm(y~x1+x2+x3+x4)$residuals^2)/n)+2*(4+1)=-4.48
 # Step 1: (current model y= βo + β1X1+β2X2 +β3X3 +β4X4, V0= -4.48)

 AIC1a=n*log(sum(lm(y~x2+x3+x4)$residuals^2)/n)+2*(3+1)
 AIC1b=n*log(sum(lm(y~x1+x3+x4)$residuals^2)/n)+2*(3+1)
 AIC1c=n*log(sum(lm(y~x1+x2+x4)$residuals^2)/n)+2*(3+1)
 AIC1d=n*log(sum(lm(y~x1+x2+x3)$residuals^2)/n)+2*(3+1)
 print(c(AIC1a, AIC1b, AIC1c, AIC1d))
 V1= -6.46, remove x1, 



10.2. Model Selection in Practice

 Backward Selection
 Each time delete 1 variable, until no improvement

 Example
 # Step 2: (current model y= βo +β2X2 +β3X3 +β4X4, V0= -6.46)

 AIC2a=n*log(sum(lm(y~x3+x4)$residuals^2)/n)+2*(2+1)
 AIC2b=n*log(sum(lm(y~x2+x4)$residuals^2)/n)+2*(2+1)
 AIC2c=n*log(sum(lm(y~x2+x3)$residuals^2)/n)+2*(2+1)
 print(c(AIC2a, AIC2b, AIC2c))
 V2=16.10> -6.46 =V1. STOP, without removing any variable
 Conclusion

 The model    y= βo+β2x2+β3x3 +β4x4    is the best according to AIC using 
Backward Selection.



What you have learnt

 Regression: Relationship b/w variables
 Y=Xβ+e

 Least Sq Est β,  Test if β=0,   C.I. for β,   Predict Y
 Compare between models by F-test

 Diagnostic check – Residual/scatter/AV plot
 Improvement

 Non-constant variance  -- WLS
 Curve relationship  -- 1) Poly Reg    2) Transform
 Check Outlier – 1) T-test    2) Cook’s distance

 Variable selection: 1)AIC.  2)BIC.   3)Cp.  4)Press


