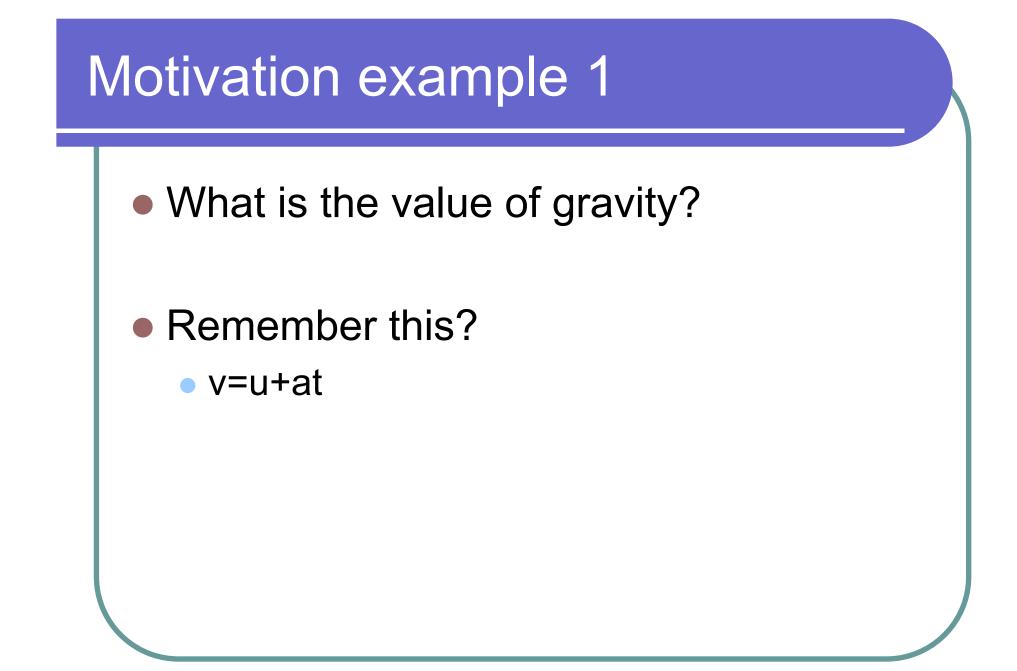
Chapter 1

Scatterplot and Regression



v=u+gt

Experiment

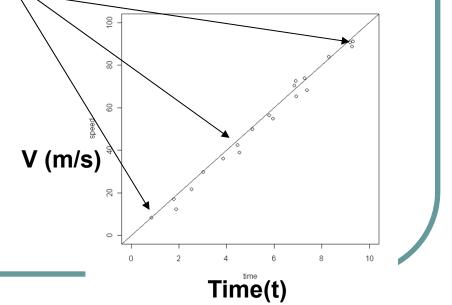
- Drop sth from the top of different buildings
- Record the landing speed and travelling time

Building	V (final speed m/s)	t (time s)
LSB	11	1
MMW	50	5.2
IFC	93	9

- True relation: v=gt
- Interest: find g
- Estimated quantities

Building	V (final speed m/s)	t (time s)]
LSB	11	1	
MMW	50	5.2	$\left \right\rangle$
IFC	93	9	

- The estimated quantities do not exactly follow v=gt
 - Measurement error
 - Air resistance
 - ...
- The intercept of the line ≈ 0
- The slope of the line \approx g.
- How to draw the line in a professional manner???

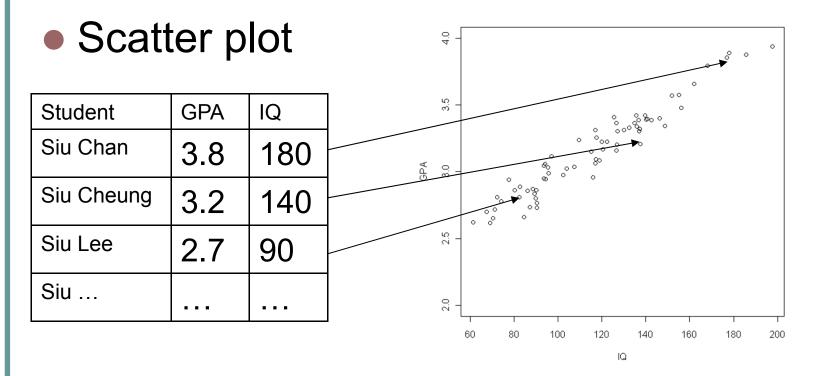


- Want: predict the grade point average (GPA) of all STAT3008 students.
- To do this:
 - 1. Select a random sample of past STAT3008 students.
 - 2. Record the GPA of each student
 - 3. Record some properties which may be useful for prediction, e.g. IQ, AL-score
 - 4. Use the information obtained in 2&3 to predict the GPA of this year's STAT3008 students.

Suppose we decided to relate GPA(Y) to IQ(X)

Student	GPA	IQ
Siu Chan	3.8	180
Siu Cheung	3.2	140
Siu Lee	2.7	90
Siu		

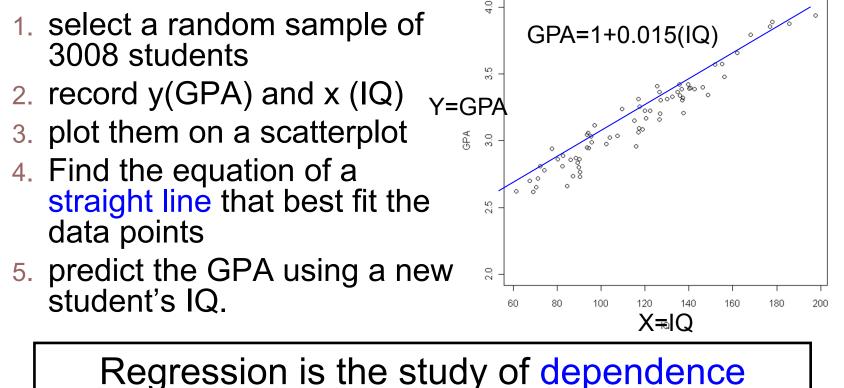
 How to understand the relationship between GPA and IQ?



 How to use a mathematical model that relates Y(GPA) to X(IQ) and best fits the data?

Linear Regression in 1 page

Steps



between Predictors (X) and Responses (Y)

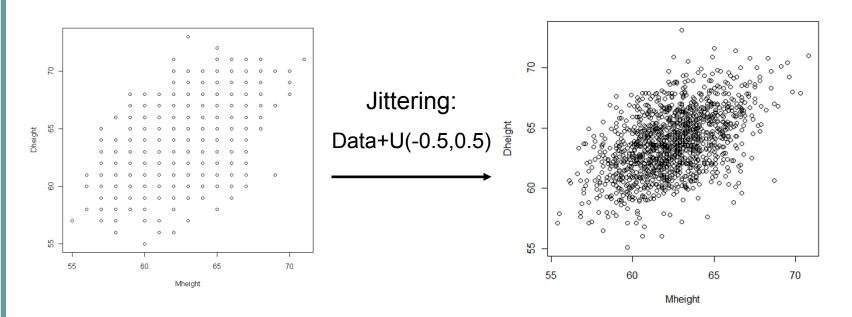
Linear Regression Y=a+bX

Regression is the study of dependence between Predictors (X) and Responses (Y)

Associated questions to consider

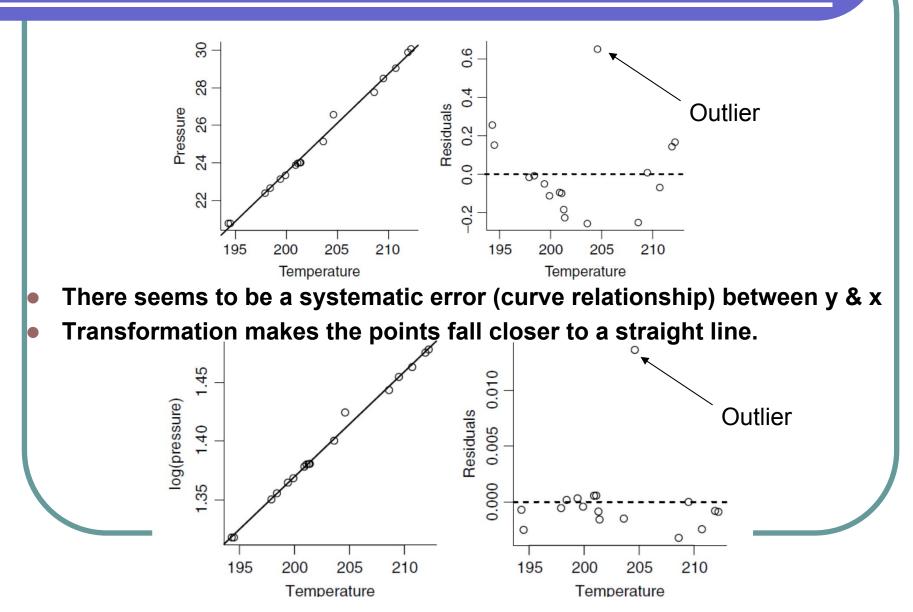
- Find the equation (intercept a and slope b) e.g. gravity
- Prediction of future values of a response (forecast unknown Y using observed X) <u>e.g GPA vs IQ</u>
- Discovering which predictors are important
- Does a straight line fits the data well?
- If the straight line doesn't fit well, how can we improve the fit?

Examples 1 – Heights data "Do taller mothers have taller daughters?"

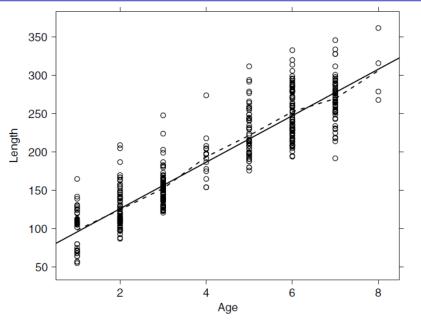


- Axis are the same (55-70) \rightarrow mother height \approx daughter height
- Daughter height increases with mothers height
- Slope seems a little smaller than 45°. Daughter not as tall as mother
- The scatter of points appears elliptically shaped

Examples 2 – Forbes Data Measure pressure from boiling point of water

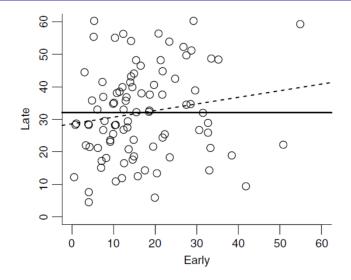


Examples 3 – Smallmouth Bass Size vs Age of fish



- The dash line joins the average observed length at each age.
 i.e. mean of length at age i, i=1,2,...,8.
 - This summary of data needs 8 numbers.
- The solid line is the regression line, Y=a+bX.
 - This summary of data needs 2 numbers (slope and intercept).
 - Regression gives a good summary for this dataset

Examples 4 – Predicting the weather Predict late season snowfall from early snowfall



- Early (predictor): early winter snowfall from Sep 1 until Dec 31 (inches)
- Late (response): late winter snowfall from Jan 1 to Jun 30 (inches)
- Dash line = regression line
- Solid line = average Late snowfall (slope=0)
 - Can Early predict Late? (Is the slope significantly different from 0?)

Mean functions

- Two characteristics of the distribution of the Y given X = x:
 - 1. mean functions
 - 2. variance functions
- define mean function:

$$\mathsf{E}(\mathsf{Y} \mid \mathsf{X} = \mathsf{x}) = \mathsf{f}(\mathsf{x})$$

- expected value of the response when the predictor is fixed as X=x
- e.g.,
 - Linear regression: f(x)=a+bx,
 - Polynomial regression: f(x)=a + bx + cx²
 - Heights data
 - E(Dheight | Mheight = x) = $\beta_0 + \beta_1 x$
 - parameters: β_0 (intercept), β_1 (slope)
 - β_0 , β_1 need to be estimated from data
 - It is found that β_1 's estimate <1. e.g. Mheight=70inch \rightarrow E(Dheight)=68
 - Regression extreme values regress towards the mean

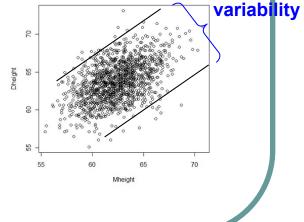
Variance functions

• Two characteristics of the distribution of the Y given X = x:

- 1. mean functions
- 2. variance functions
- Define variance function:

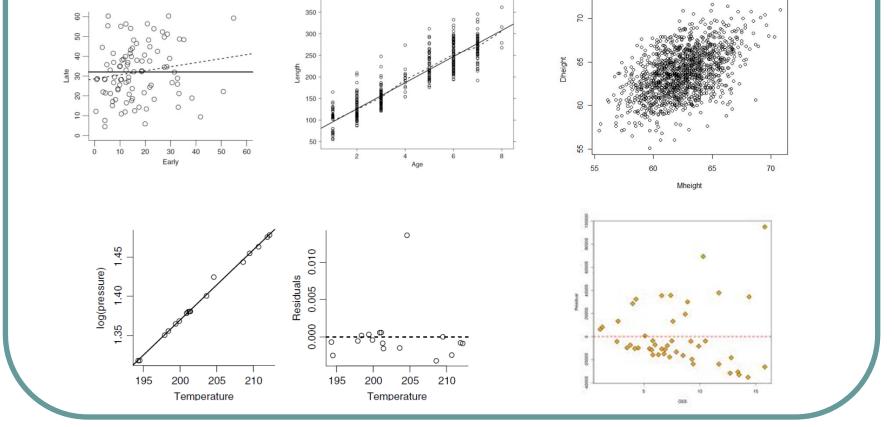
$$Var(Y \mid X = x) = \sigma^2$$

- Variance of the response is the same for all value of predictor x
- This is assumed for good statistical properties of the estimators
- e.g.,
 - Heights data
 - Var(Dheight | Mheight = x) = σ^2
 - from the scatterplot, the variance function for Dheight|Mheight is approximately the same across Mheight



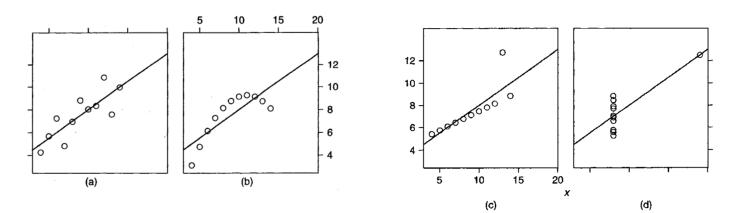
Variance functions

Constant variance?



Four hypothetical data sets

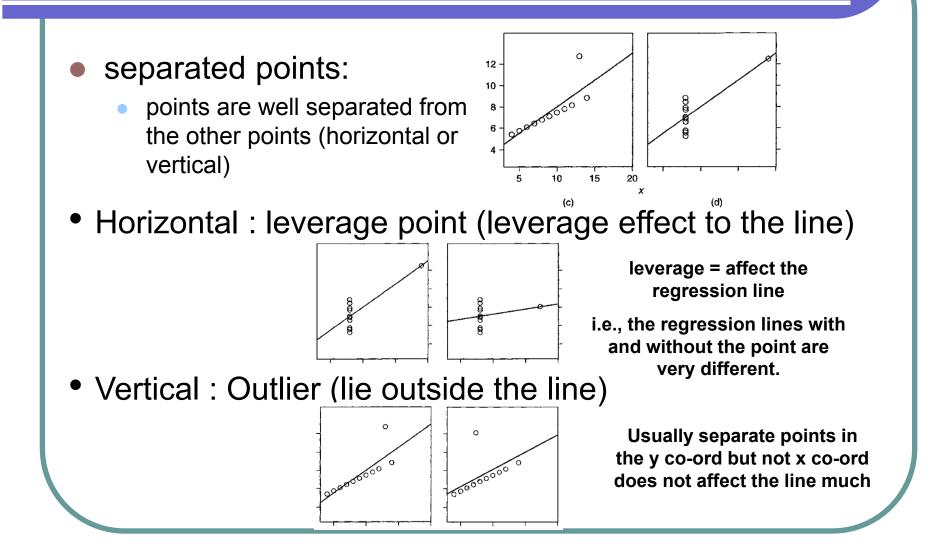
- See Textbook Table 1.1 for exact values of 4 data sets
- each data set leads to the same results (estimated intercept and slope, other summary statistics)



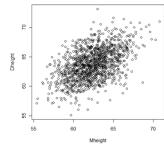
Conclusions

- Dependence is not limited to E(Y|X)=a+bX. (may be a curve)
- Summary statistics may not give a good summary of dependence
- Need to examine summary graph (scatterplot) first

Separated points

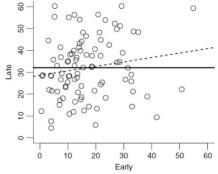


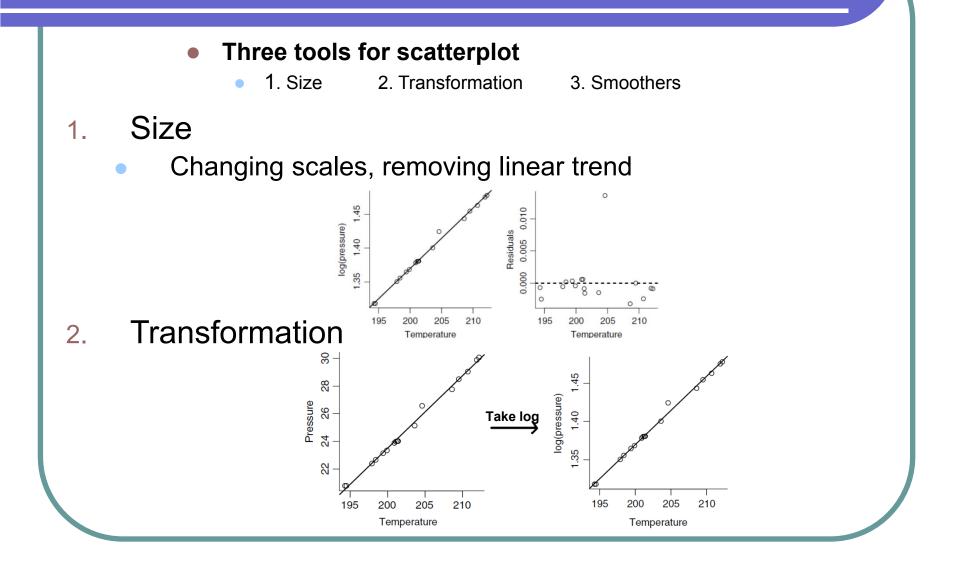
- Scatter plot shows
 - mean function
 - variance function
 - any separated points
- null plot
 - constant mean function (=0)
 - constant variance function
 - no separated points
 - 3 tools enhancing scatterplot
 - Size
 - Transformation
 - Smoothers



- 1. Mean function linear
- 2. Variance function constant
- 3. No separate point

Snowfall data





- Three tools for scatterplot
 - 1. Size 2. Transformation 3. Smoothers
- 3. Smoothers (e.g. loess: locally weighted scatterplot smoothing)
- A scatterplot smoother
 - estimates the mean function E(Y |X = x) as x varies
- No parametric assumptions about the mean function.

length

e.g. E(length|Age) is estimated for each age in Fish data.

- loess smoother (locally weighted scatterplot smoother):
 - Idea: Use the "local data" (observation near x) to find E(Y|X=x), for various x.

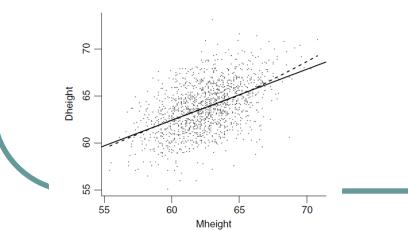
LOESS (locally weighted scatterplot smoother smoother):

- estimates E(Y |X = x) by fitting a straight line to a fraction (f) of point closest to x
- Giving more weight to points close to x than to points distant from x
- Procedure:

1. Specify f and some x_i . 2. Find $E(Y|X=x_i)$ for each x_i . 3. Join $(x_i, E(Y|X=x_i))$

Example : Heights data

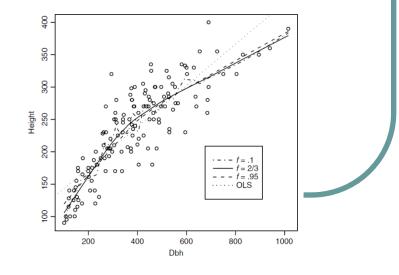
- dash line: smoother
- solid line: Linear Regression

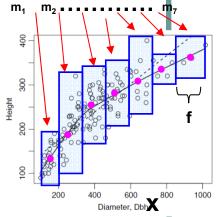


- Example : See p.277
 - Compare to the Heights data,

Linear Regression is bad. Need transformation

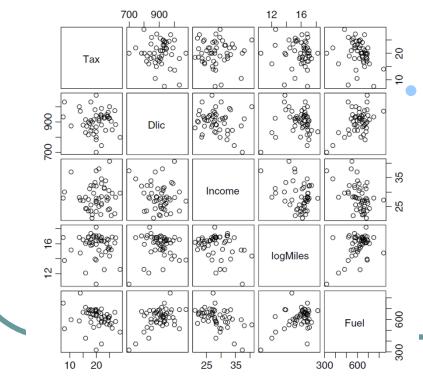
ESTIMATING E(Y|X) USING A SMOOTHER





Scatterplots Matrix

- What to do if there are more than 2 variables?
 - Scatterplot for every combination
 - Caution!!
 - Only marginal relationship between two variables is observed.
 - Joint relationship (3 or more variables' interaction) can't be seen



In this example,

- Fuel is response(y)
- Relationship b/w pairs of predictors are rather weak (null plots)
- So marginal plots are quite informative already, don't worry about higher order interaction
- Note that the matrix is symmetric

Computer program: R

Data can be obtained from http://www.stat.umn.edu/alr/data/ Or the download the R package alr3 Example (see textbook p.15) x=read.table("C://fuel2001.txt",header=T) #(read .txt file) library(alr3);data(fuel2001); x=fuel2001 x\$Fuel=x\$FuelC/x\$Pop x\$Dlic=x\$Drivers/x\$Pop x\$LogM=log(x\$Miles,2) pairs(x[,c(7,9,3,10,8)])with(x,pairs(cbind(Tax,Dlic,Income,LogM,Fuel))) plot(x[,8],x[,10])

Computer program: R

 Example of loess (textbook p.14) x=read.table("C://heights.txt",header=T) library(alr3);data(heights); x=heights plot(x\$Mheight,x\$Dheight) with(x,plot(Mheight,Dheight)) fit<-Im(x\$Dheight~x\$Mheight) abline(a=fit\$coef[1],b=fit\$coef[2]) with(x,lines(lowess(Dheight~Mheight,f=0.2),lty=2, col=4))