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1 Model Assumption

In the last tutorial, the model assumes that the response Y|X=x only depends on one factor, x. However,
our real world is much more complicated that many phenomena cannot be explained by only one factor.
Therefore, we would often like to assume that the response are affected by multiple factors.

Therefore, to find out the relationship of our response with these factors, we have to use multiple
linear regression. The model assumption is as follow.

Multiple Linear Regression Model
The model relating the factors are assumed to be:

yi = Y|X=(xi1,xi2,...,xip) = β0 + β1xi1 + +β2xi2 + · · ·+ βpxip + ei

where E(ei) = 0, Var(ei) = σ2 and ei’s are i.i.d. Therefore, we have

E[Y |X = (xi1, xi2, . . . , xip)] = β0 + β1xi1 + +β2xi2 + · · ·+ βpxip

Var[Y |X = (xi1, xi2, . . . , xip)] = σ2.

For simplicity, the model is always express in matrix form:

Y = X β+ e

where the matrices are defined as

Y =


y1
y2
...
yn

 , X =


1 x11 x12 · · · x1p
1 x21 x22 · · · x2p
...

...
...

. . .
...

1 xn1 xn2 · · · xnp

 , β =


β0
β1
...
βp

 and e =


e1
e2
...
en

 .
Note that the i-th row of the matrix equation is actually the equation corresponding to the i-th
response,

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + ei.

Also, the expectation and covariance matrix of e is given by

E(e) = 0 and Var(e) =


Var(e1) Cov(e1, e2) · · · Cov(e1, en)

Cov(e2, e1) Var(e2) · · · Cov(e2, en)
...

...
. . .

...
Cov(en, e1) Cov(en, e2) · · · Var(en)

 = σ2I

∗s1155002282@sta.cuhk.edu.hk

1



2. SOME OPERATIONS OF MATRIX

Remark 1.1. The number of parameters to estimate is p+ 1, with p coefficients, β1, β2, . . . , βp, and the
intercept, β0. �

Remark 1.2. The error term is assumed to be independent as

Var(e) = σ2I ⇒ Cov(ei, ej) = 0 , i 6= j. �

2 Some Operations of Matrix

In multidimensional analysis, the involvement of matrix simplifies the presentation of simultaneous
equations. As in one dimensional cases, many operations such as differentiation and expectation. The
definitions are given below.

Matrix Differentiation

Definition 2.1. Consider a vector β = [β1 β2 · · · βk]′ ∈ Rk and a function f : Rk → R where

f(β) = f ([β1 β2 · · · βk]′) ,

the derivative of f with respect to β is given by

∂f

∂ β
=

[
∂f

∂β1

∂f

∂β2
· · · ∂f

∂βk

]′
Lemma 2.1. Let β ∈ Rk and c ∈ Rk, then we have

∂

∂ β
c′ β =

∂

∂ β
β c′ = c

Lemma 2.2. Let β ∈ Rk and M ∈ Rk×k, then we have

∂

∂ β
β′M β = (M ′ +M)β

Trace of a Matrix

Definition 2.2. Let A = [aij ] ∈ Rn×n, then the trace of A is defined as tr(A) =
n∑

i=1

aii.

Lemma 2.3. Let A and B are both n× n matrix, then we have the following properties

1. tr(A+B) = tr(A) + tr(B)

2. tr(AB) = tr(BA)

3. tr(E(A)) = E(tr(A))

Random Vector

Definition 2.3. Let X = [X1 X2 · · · Xn]′ where X1, X2, . . . , Xn are random variables, then
the expectation and variance of X is defined as

E(X) =


E(X1)
E(X2)

...
E(Xn)

 and Var(X) =


Var(X1) Cov(X1, X2) · · · Cov(X1, Xn)

Cov(X2, X1) V ar(X2) · · · Cov(X2, Xn)
...

...
. . .

...
Cov(Xn, X1) Cov(Xn, X2) · · · Var(Xn)


Lemma 2.4. Let X be a random vector of size n and A be an n× n constant matrix, then

E(AX) = AE(X) and Var(AX) = AVar(X)A′
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3. LEAST SQUARE ESTIMATOR

3 Least Square Estimator

Similar as in simple linear regression, we want to find an estimate that minimises the distance in the
response in the p+ 1 dimensional Euclidean space. The problem is equivalent to minimising

RSS(β) = (Y −X β)′(Y −X β) = Y ′ Y −2Y ′X β+β′X ′X β

By differentiation, we have the following result.

Least Square Estimator
The least square estimator of multiple linear regression is given by

β̂ = (X ′X)−1X ′ Y

σ̂2 =
RSS(β̂)

n− (p+ 1)
=
Y ′(I −X(X ′X)−1X ′)Y

n− (p+ 1)

The expectation and variance of the estimators are

E(β̂) = β, Var(β̂) = σ2(X ′X)−1 and E(σ̂2) = σ2.

Asymptotically, by central limit theorem, we know that

β̂ ∼ N
(
β, σ2(X ′X)−1

)
and

(n− p− 1) σ̂2

σ2
∼ χ2(n− p− 1).

Remark 3.1. Because of its frequency appearance in the context of multiple linear regression, the
matrix X(X ′X)−1X ′ is known as the hat matrix, denoted by H. �

Exercise 3.1. Show that

E(β̂) = β and Var(β̂) = σ2(X ′X)−1.

Exercise 3.2. (2013 Fall Midterm #5) In searching for the estimates of the regression coefficient β, we
differentiate the RSS and solve for system of equations. Will there be more than one solutions? Will
the solution be the maximiser of the RSS instead of minimiser?
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3. LEAST SQUARE ESTIMATOR

Exercise 3.3. Show that E(σ̂2) = σ2.

Exercise 3.4. (2013 Fall Midterm #3) For the regression Y = X β+ e where e ∼ N (0, σ2), let ŷi =

underlineXi β̂ be the fitted value of the i-th observation, i = 1, 2, . . . , n. Let X be an n× p matrix.

1. Find E(
n∑

i=1

ŷi
2) in terms of X, β, p and σ2.

2. Find E(
n∑

i=1

(ŷi− ȳ)(yi − ŷi).
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4. ADDED-VARIABLE PLOT

4 Added-Variable Plot

In multiple regression, it is difficult to use a graph to illustrate the relationship between E[Y |X =
(xi1, xi2, . . . , xip)] and (xi1, xi2, . . . , xip), especially when we have p > 2. However, it is always easier

to understand if we have graphs illustrating the meaning of the β̂i’s. The way of doing this is by a
added-variable plot.

Added-Variable Plot
For a regression model Y = X β+ e, it can be rewritten in the form

Y = 1β0 +X1β1 + · · ·+Xiβi + · · ·+Xpβp + e .

Now, if we want to now the effect of the ith factor, i.e. βi, we first arrange the model in the
following manner.

Y = Xiβi +XOβO + e

where XO is a matrix grouping X1, X2, . . . , Xi−1, Xi+1, . . . , Xp and βO is a vector, i.e.

XO =


1 x11 · · · x1(i−1) x1(i+1) · · · x1p
1 x21 · · · x2(i−1) x1(i+1) · · · x2p
...

...
. . .

...
...

. . .
...

1 xn1 · · · xn(i−1) x1(i+1) · · · xnp

 and βO =



β0
...

βi−1
βi+1

...
βp


Then, we can draw the added-variable plot following the process stated below:

1. Perform multiple linear regression on Y against XO. Obtain the residuals êY |XO
.

2. Perform multiple linear regression on Xi against XO. Obtain the residuals êXi|XO
.

3. Perform no-intercept simple linear regression on êY |XO
against êXi|XO

.

4. The plot of êY |XO
against êXi|XO

is the added-variable plot.

Proposition 4.1. The slope obtained from step 3 is in fact equal to β̂i which we obtained from
β̂ = (X ′X)−1X ′ Y .

Remark 4.1. In reality, it is very often that different factors are correlated. Therefore, the ith factor may
somehow depends on the other factors. The regression of Xi against XO investigate such a relationship.
In general,

• êY |XO
is the value of Y which cannot be explained by XO.

• êXi|XO
is the value of the ith factor which cannot be explained by XO. Such values somehow

serves as a pure ith factor value.

Therefore, the regression of êY |XO
against êXi|XO

shows the pure relationship between the response and
the ith predictor, net of the effect from other predictors. �

Remark 4.2. In step 3, a no-intercept simple linear regression is needed. However, when plotting the
added-variable plot, we can still apply the result from normal simple linear regression. The intercept is
forced to be zero by the property of residuals.

Recall that in simple linear regression of y against x, β̂0 = ȳ− β̂1 x̄, here the response is êY |XO
and the

predictor is êXi|XO
. Therefore, we have the intercept (here, we use η̂i for the parameters in this model,

not to be confused with the model Y = X β+ e)

η̂0 =
1

n

n∑
j=1

[
êY |XO

]
j
− η̂1

 1

n

n∑
j=1

[
êXi|XO

]
j

 =
1

n
· 0− η̂1 · 0 = 0. �
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4. ADDED-VARIABLE PLOT

Exercise 4.1. This exercise proves Proposition 4.1.

1. Show that for the linear regression Y = X β+ e, let H = X(X ′X)−1X, we have

ê = (I−H)Y and (I−H)X = 0.

2. Show that for a linear regression Y = X β+ e, the ith coefficient β̂i is equal to the coefficient η̂1
in the simple linear regression êY |XO

= η1êXi|XO
+ ẽ.

3. Show that, let HO = XO(X ′OXO)−1X ′O,

β̂i =
Xi(I−HO)Y

Xi(I−HO)Xi
.
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