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1 Model Assumption

To quantify the relationship between two factors, say X and Y , we have to at least assume the type of
relationship they have, could it be linear, logarithm, quadratic, etc.

In the experiment, the factor Y is likely to be affected by the factor X. In usual experiment con-
text, X and Y are known as independent and dependent factors respectively. But in linear regression,
X and Y are known as predictor and response respectively. Now, we state our model assumption:

Simple Linear Regression Model
The model relating the two factors are assumed to be:

yi = Y|X=xi = β0 + β1xi + ei

where E(ei) = 0, Var(ei) = σ2 and ei’s are i.i.d. Therefore, we have

E(Y |X = xi) = β0 + β1xi

Var(Y |X = xi) = σ2

Remark 1.1. The values xi here are known constants, instead of some realised observations from a
random variable X. For regression of random predictors, you may refer to [1]. �

Remark 1.2. It should be noticed that the response yi is a random variable. The data set {xi, yi}ni=1

consists of realised values from the random variables. �

2 Least Square Estimator

Essentially, we want to fit a straight line to the set of points on the Cartesian plane. However, there are
many ways to define ”good” in a fit. The simplest way is to consider the total vertical distance between
the points and the line. The best fit line is therefore the line which minimises the distance, i.e. which
minimises

RSS(β0, β1) =

n∑
i

[yi − (β0 + β1xi)]
2

Minimising the total distance is equivalent to minimising the total squared distance. Hence, we have
the Least Square Method. By elementary multivariate calculus and statistical concepts, the derivation
performed in the lesson yields the following results.
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2 LEAST SQUARE ESTIMATOR

Least Squares Estimator
If we define the following notations,

x̄ =
1

n

∑
i

xi

ȳ =
1

n

∑
i

yi

SXX =
∑
i

(xi − x̄)2 =
∑
i

x2
i − n x̄2

SYY =
∑
i

(yi − ȳ)2 =
∑
i

y2
i − n ȳ2

SXY =
∑
i

(xi − x̄)(yi − ȳ) =
∑
i

xiyi − n x̄ ȳ

then the estimators are given by

β̂0 = ȳ−β̂1 x̄

β̂1 =

∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2
=

SXY

SXX

σ̂2 =

∑
i êi

2

n− 2
=

SYY−SXY2 /SXX

n− 2
.

Under our estimated model, we therefore have the fitted values given xi and the residual, i.e. the
difference between the fitted value and the realised value.

ŷi = Ê(Y |X = xi) = β̂0 + β̂1 xi

êi = yi − ŷi = yi − β̂0− β̂1 xi

Remark 2.1. For the detailed derivation, please refer to the lecture notes. You should be familiar with
their derivation as they may be tested in midterm and final exam. �

Remark 2.2. β̂0 and β̂1 can be written as linear combinations of yi:

β̂1 =
∑
i

(
xi − x̄
SXX

)
yi and β̂0 =

∑
i

[
1

n
− x̄

(
xi − x̄
SXX

)]
yi.

This is useful when deriving the distribution and consistency of the estimators in Exercise 4.1. �

Remark 2.3. By the derivative condition of RSS with respect to β0, we have∑
i

êi = 0 and ȳ = β̂0 + β̂1 x̄ . �

Exercise 2.1. (2012 Fall Midterm #3) Use the simple linear regression model to fit a straight line on

two data points: (−2, 4), (−1, 3). What are the values of β̂0 and β̂1?
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2 LEAST SQUARE ESTIMATOR

Exercise 2.2. Show that ∑
i

xi êi = 0 and, therefore
∑
i

ŷi êi = 0.

Exercise 2.3. Show that σ̂2 is an unbiased estimator of σ2, i.e.

E(σ̂2) = σ2.
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3 ANALYSIS OF VARIANCE(ANOVA)

3 Analysis of Variance(ANOVA)

It is natural that we are interested in whether our model assumption is correct. The basic question will
be if Y is really related to X. Mathematically, this question is equivalent to asking whether β1 is zero in
our model. The most common way is the Analysis of Variance, which compares two models of different
mean functions.

We want to test the following hypothesis:

H0 : E(Y |X = x) = β0 vs H1 : E(Y |X = x) = β0 + β1x.

Therefore, we need some test statistics related to these two hypothesis and, most importantly, of
known distributions. Consider the residual sum of square for the two models. For H0, we have

Ê(Y |X = x) = β̂0 = ȳ ⇒ RSSH0
=
∑
i

(yi − ȳ)2 = SYY .

On the other hand, for H1, we have

RSSH1
=
∑
i

[
yi −

(
β̂0 + β̂1 xi

)]2
= SYY−SXY2

SXX
.

Since we use more variables to fit the points in H1, it must be true that RSSH0
≥ RSSH1

.
Therefore, H1 is valid only when RSSH0 ≫ RSSH1 . For easy comparison, we define the
Sum of Square due to Regression as

SSreg = RSSH0
−RSSH1

=
SXY2

SXX
.

Equivalently, H1 is valid only when SSreg≫ 0.

3.1 Distributions of Estimators

To define how large is large, we need the distributions as well so that we can define ”large” in a
probabilistic sense. Under H0, the distribution of the sum of squares are given below,

By simple algebra, we rewrite

SSreg =
SXY2

SXX
=

[∑
i

(
xi − x̄√

SXX

)
yi

]2

.

By Central Limit Theorem, we have∑
i

(
xi − x̄√

SXX

)
yi  N (0, σ2).

Therefore, we know SSreg /σ2 ∼ χ2(1). Also, it is known that (n− 2) σ̂2 /σ2 ∼ χ2(n− 2). The test
statistic is thus given by

F =
SSreg /σ2

1

(n−2) σ̂2
H1

/σ2

n−2

=
SSreg

σ̂2
H1

∼ F (1, n− 2).

For significance level α, we reject H0 if the p-value is smaller than F1−α(1, n− 2).

Remark 3.1. That (n− 2) σ̂2 /σ2 ∼ χ2(n− 2) is due to a fact that the degree of freedom is the number

of values in the statistics that are free to vary. The detailed proof of the distribution of (n − 2) σ̂2 /σ2

includes the use of quadratic forms, which is beyond the scope. Interested students may refer to [2]. �
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3.2 ANOVA Table 3 ANALYSIS OF VARIANCE(ANOVA)

Remark 3.2. It should be noticed that the σ̂2 here is under the model in H1. The reason of using this
instead of σ̂2 under H0 is examined in Exercise 3.1. �

Exercise 3.1. What is the estimator of σ2 under H0? Explain why the use of it in the denominator
makes no sense.

Exercise 3.2. Show that ∑
i

(yi − ȳ)2 =
∑
i

(yi − ŷi)2 +
∑
i

(ŷi− ȳ)2

3.2 ANOVA Table

Thanks to the result of Exercise 3.2, we have a neat and tidy representation of ANOVA, which is called
the ANOVA table.

Source df SS MS F p-value

Regression 1 SSreg SSreg /1 SSreg / σ̂2 P (F1,n−1 > F )

Residual n− 1 RSSH1
σ̂2 = RSS /(n− 2)

Total n− 2 SYY

You should be extremely familiar with the above table because it appears in every midterm. We will
practice this in Exercise 4.3 and 4.4.

Remark 3.3. Therefore, we can define the ”Coefficient of Determination” to be

R2 =
SSreg

SYY
∈ [0, 1].

The realised value summarises the strength of relationship between the sampled response and predictors.
�
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4 INTERVALS, TESTS AND BAND

4 Intervals, Tests and Band

Besides testing the mean functions by ANOVA, we will also want to perform test on individual param-
eters. Therefore, we need the distributions of the estimator. We begin this section with an exercise.

Exercise 4.1. Prove that β̂0 and β̂1 are unbiased and find their variance and asymptotic distribution.

4.1 Confidence Intervals and Tests for Intercept and Slope

With the distributions of the estimator and some facts in statistics, we can construct the test statistics
from the distribution derived in Exercise 4.1.

Confidence Interval and Test for Intercept
If we want to test whether the intercept is a certain value β∗0 , i.e.

H0 : β0 = β∗0 vs H1 : β0 6= β∗0 ,

then the test statistic is

t =
β̂0−β∗0
se(β̂0)

∼ t(n− 2) where se(β̂0) = σ̂

√
1

n
+

x̄2

SXX
.

Therefore, for significance level α, we reject H0 when |t| > t1−α2 (n− 2). Also, the (1− α)× 100%
confidence interval of β0 is given by

β̂0−t1−α2 (n− 2) se(β̂0) ≤ β0 ≤ β̂0 +t1−α2 (n− 2) se(β̂0).

Confidence Interval and Test for Slope
Similarly, for the test of slope, i.e.

H0 : β1 = β∗1 vs H1 : β1 6= β∗1 ,

the test statistic is

t =
β̂1−β∗1
se(β̂1)

∼ t(n− 2) where se(β̂0) =
σ̂√

SXX
.

Therefore, for significance level α, we reject H0 when |t| > t1−α2 (n− 2). Also, the (1− α)× 100%
confidence interval of β1 is given by

β̂1−t1−α2 (n− 2) se(β̂1) ≤ β1 ≤ β̂1 +t1−α2 (n− 2) se(β̂1).
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4.1 Confidence Intervals and Tests for Intercept and Slope 4 INTERVALS, TESTS AND BAND

Remark 4.1. Obviously, a test of zero slope, i.e.

H0 : β1 = 0 vs H1 : β1 6= 0,

is equivalent to testing

H0 : E(Y |X = x) = β0 vs H1 : E(Y |X = x) = β0 + β1x,

which is our ANOVA F-test in Section 3. Therefore, they should give the same result. Mathematically,
if we look at the t-statistics,

t =
β̂1−0

se(β̂1)
=

β̂1

σ̂/
√

SXX

t2 =
β̂1

2

σ̂2 /SXX
=
β̂1

2
SXX

σ̂2
=

SXY2

σ̂2 SXX
=

SSreg

σ̂2
= F.

In general, we have

F (1,m) =
χ2(1)

χ2(m)/m
=

Z2

χ2(m)/m
=

(
Z√

χ2(m)/m)

)2

= t(m)2 �

Exercise 4.2. Construct a 95% confidence interval for the slope from the data set {(1, 1), (4, 9), (10, 10)},
given t0.975(1) = 12.7062. Bosco argues that the confidence interval you construct has a 95% probability
of including the true slope. Explain whether he is correct.

Exercise 4.3. (2013 Fall Midterm #1) Fill in the missing values in the following tables of regression
output from a data set of size 100.

ANOVA Table
Source df SS MS F

Regression
Residual

Total

Coefficient Table
Variable Coefficient s.e. t-statistics p-value
Constant 0.5854 0.2188

X 0.4927
n = σ̂ = 4.714 R2 = 0.03294
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4.1 Confidence Intervals and Tests for Intercept and Slope 4 INTERVALS, TESTS AND BAND

Exercise 4.4. (2012 Spring Midterm #1) Fill in the missing values in the following tables of regression
output. In R, it is found that qf(1−9.5e−9, 1, 6) = 1917.3. Also, x̄ = 5.125, ȳ = −9.1974,SXX = 54.875.

ANOVA Table
Source df SS MS F p-value

Regression 9.5e-09
Residual

Total

Coefficient Table
Variable Coefficient s.e. t-statistics p-value
Constant 0.00322

X -2.04245
n = σ̂ = R2 =
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4.2 Confidence and Prediction Intervals 4 INTERVALS, TESTS AND BAND

4.2 Confidence and Prediction Intervals

Besides the true intercept and slope, we are often interested in the mean of response given a predictor
x∗, i.e. E(Y |X = x∗). This can be constructed from the fitted value ŷ∗ since it is an unbiased estimator
of the mean. For example, we consider the mean IQ of a student who scores 98 in the midterm.

On the other hand, instead of the mean, we may also be interested in the response itself , i.e. y|X=x∗ .
In this case, we want to make a prediction on what the outcome will be, given x∗. Here, for example,
we are looking for the IQ of a student who scores 98 in the midterm.

Therefore, we want to construct intervals for the mean and the prediction. The results are listed below.

Confidence Interval for Mean
Given a predictor value x∗, the true value and estimation of the mean are respectively

E(Y |X = x∗) = β0 + β1x∗ and ŷ∗ = Ê(Y |X = x∗) = β̂0 + β̂1 x∗.

The estimation uncertainty of the mean is

Var (ŷ∗ − E(Y |X = x∗)) = Var(β̂0 + β̂1 x∗) = σ2

(
1

n
+

(x∗ − x̄)2

SXX

)
.

Define the standard error of fit as

sefit(ŷ∗|x∗) = σ̂

√
1

n
+

(x∗ − x̄)2

SXX
⇒ (n− 2) σ̂2

σ2
=

(n− 2) sefit(ŷ∗|x∗)2

1
n + (x∗−x̄)2

SXX

∼ χ2(n− 2).

Therefore, the (1− α)× 100% confidence interval for the mean is given by

ŷ∗ − t1−α2 sefit(ŷ∗|x∗) ≤ E(Y |X = x∗) ≤ ŷ∗ + t1−α2 sefit(ŷ∗|x∗).

Prediction Interval for Response
Given a predictor value x∗, the response and its estimation are respectively

y|X=x∗ = β0 + β1x∗ + e and ŷ∗ = β̂0 + β̂1 x∗.

The estimation uncertainty of the prediction is

Var
(
ŷ∗ − y|X=x∗

)
= Var(β̂0 + β̂1 x∗ + e) = σ2

(
1 +

1

n
+

(x∗ − x̄)2

SXX

)
.

Define the standard error of prediction as

sepred(ŷ∗|x∗) = σ̂

√
1 +

1

n
+

(x− x̄)2

SXX
⇒ (n− 2) σ̂2

σ2
=

(n− 2) sefit(ŷ∗|x∗)2

1 + 1
n + (x∗−x̄)2

SXX

∼ χ2(n− 2).

Therefore, the (1− α)× 100% confidence interval for the mean is given by

ŷ∗ − t1−α2 sepred(ŷ∗|x∗) ≤ y|X=x∗ ≤ ŷ∗ + t1−α2 sepred(ŷ∗|x∗).

Remark 4.2. The estimation uncertainty of prediction and mean differs only by σ2. The extra uncer-
tainty comes from the error term in the new observation that we wants to predict. Compare

y|X=x = β0 + β1x+ e and E(Y |X = x) = β0 + β1x.

Due to the extra uncertainty, prediction interval includes and is larger than the confidence interval for
mean. �
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4.3 Confidence Band 4 INTERVALS, TESTS AND BAND

4.3 Confidence Band

In the previous subsection, we construct confidence interval of mean for a certain point x. It is tempting
to connect all the upper limits and lower limits of confidence intervals, i.e.

(β̂0 + β̂1 x)± t1−α2 sefit(ŷ|x), ∀x

and say that this random band has a (1 − α) × 100% probability of including the true mean line
E(Y |X = x) = β0 + β1x. However, this is wrong (see Remark 4.3 and Exercise 4.5). The correct band
is given below.

Confidence Band for Mean Function
The (1− α)× 100% confidence band of the mean function is given by

C(x) = (β̂0 + β̂1 x)±
√

2F1−α(2, n− 2) sefit(ŷ|x), ∀x.

Therefore, it is true that

Pr(The mean line lies in the confidence band) = Pr
(
∀x, E(Y |X = x) ∈ C(x)

)
= 1− α.

Remark 4.3. For confidence interval C(x) = (β̂0 + β̂1 x)± t1−α2 sefit(ŷ|x∗) , we have by definition

∀x, Pr
(
E(Y |X = x) ∈ C(x)

)
= 1− α.

This relationship holds for each point, i.e. pointwise. While for the confidence band, we have

Pr
(
∀x, E(Y |X = x) ∈ C(x)

)
= 1− α.

Here, the inclusion is for the entire line. The two cases are different. �

Exercise 4.5. Explain, why it is wrong to say the band,

(β̂0 + β̂1 x)± t1−α2 sefit(ŷ|x), ∀x

has a (1− α)× 100% probability of including the mean line E(Y |X = x) = β0 + β1x.
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Exercise 4.6. For the data set {(1, 1), (4, 9), (10, 10)}, construct

1. a 95% confidence interval and a 95% interval for the point x = 3, and

2. a 95% confidence band.

3. What is the value of the band when x = 3?

You are given t0.975(1) = 12.7062 and F0.95(2, 1) = 199.5.

5 Residuals

To check whether our model assumption is valid, a good way is to look at the residual plot. Recall that
the residuals

êi = yi − ŷi = yi − β̂0− β̂1 xi

so this gives

E(êi) = E(yi)− β0 − β1xi = 0 and Var(êi) = σ2

(
1 +

1

n
+

(xi − x̄)2

SXX

)
.

The data set gives a set of realised êi. According to our observation above, these realised residuals should

• have mean close to zero, and

• have constant variance for all value xi.

A plot that satisfies the above criteria is a null plot, which indicates that the model assumption is valid
and the regression is a good fit.

6 Appendix

For more reference, you may refer to the following text books.
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