STAT 3008 Applied Regression Analysis Midterm 2:45-4:15. Monday, 21 Oct 2013

Name: _____ Major: _____

1. (20) Fill in the missing values in the following tables of regression output from a data set of size 100.

ANOVA Table									
Source	Sum of Squares	d.f.	Mean Square	F-statistics					
Regression									
Residuals									
Total									

Coefficient Table									
Coefficient	s.e.	t-statistics	p-value						
0.5854			0.2188						
	0.4927								
$R^2 = 0.03294$	$\hat{\sigma} = 4.714$								
	Coefficient 0.5854	Coefficients.e.0.5854	Coefficients.e.t-statistics0.58540.4927						

p.s.

- i) It is found in R that 2 * (1 pt(1.238, 98)) = 0.2188.
- ii) $\hat{\beta}_1$ is positive.

You may list your steps in the below area.

2. (50) There are 8 students in the class STAT 3009. For each student, the GPA (out of 4), IQ, and averaged studying-hour per day are recorded.

Student	1	2	3	4	5	6	7	8
GPA (Y)	1.70	2.44	3.585	1.52	3.94	2.22	2.88	1.84
IQ (X_1)	150	180	120	140	130	90	110	130
Hour (X_2)	1	2	4.5	0	5	3	4	2

It is found that if

X =	<pre>(1 1 1 : 1 1 </pre>	150 180 : 130	$ \begin{array}{c} 1^{2} \\ 2^{2} \\ \vdots \\ 2^{2} \end{array} $, then $(X'X)^{-1} =$	$ \begin{pmatrix} 5.237 \\ -0.03454 \\ -0.05841 \end{pmatrix} $	-0.03454 0.0002408 0.0002958	-0.05841 0.0002958 0.001976 /
(: \ 1	: 130	$\frac{1}{2^2}$		-0.05841	0.0002958	0.001976

Let $\hat{e}_{Z_1|Z_2}$ be the residual vector of computed from regressing Z_1 against Z_2 . Denote $X_3 = X_2^2$, $E_i = \hat{e}_{Y|X_i}$ and $E_{ij} = \hat{e}_{X_i|X_j}$ for $i \neq j$ and $i, j = \{1, 2, 3\}$. For any vectors $U = (u_1, \ldots, u_n)$ and $V = (v_1, \ldots, v_n)$, define $SUV = \sum_{i=1}^n u_i v_i$. We have

SYY	SX_1X_1	SX_2X_2	SX_3X_3	SE_1E_1	SE_2E_2	SE_3E_3
56.14	142900	79.25	1405.1	5.254	0.678	3.418
$SE_{12}E_{12}$	$SE_{13}E_{13}$	$SE_{21}E_{21}$	$SE_{31}E_{31}$	$SE_{23}E_{23}$	$SE_{32}E_{32}$	SE_1E_{13}
4013.1	4152.0	16.93	505.99	1.56	44.63	62.88
SYX_1	SYX_2	SYX_3	SX_1X_2	SX_1X_3	SX_2X_3	SE_3E_{31}
2605.2	64.27	255.98	2670	9640	324.1	4.99
SE_1E_{21}	SE_1E_{31}	SE_2E_{12}	SE_2E_{32}	$SE_{3}E_{13}$	SE_3E_{23}	SE_1E_{12}
9.106	51.19	35.86	3.879	33.33	0.038	64.42

i) (5 marks) Suppose that you want to draw a graph to represent the relationship between Y and X_1 with the effect of X_2 removed. What are the x and y axis of that graph? What's the name of this graph?

ii) (10 marks) Suppose that the residuals of the regressions $Y = \alpha_0 + \alpha_1 X 1 + e$ and $X 2 = \alpha_0 + \alpha_1 X 1 + e$ are

(-0.682, 0.271, 0.989, -0.933, 1.42, -0.589, 0.213, -0.685) and (-1.128, 0.768, 1.48, -2.42, 2.28, -0.919, 0.678, -0.725),

respectively. Sketch a scatterplot for the relationship between Y and X2. Is a linear regression appropriate? What should we do?

iii) (10 marks) For the regression $\hat{e}_{Y|X1} = \eta_0 + \eta_1 \hat{e}_{X_2^2|X_1} + e$, find the estimate of η_0 and η_1 and and find their standard errors.

iv) (10 marks) Give all the estimates of the regression $Y = \gamma_0 + \gamma_1 X_1 + \gamma_2 X_2^2 + e$. Let $\hat{\gamma}_2$ be the estimate of γ_2 . Find the standard error of $\hat{\gamma}_2$.

v) (5 marks) Compare between the standards errors of $\hat{\gamma}_2$ and $\hat{\eta}_1$. Are they the same?

vi) (10 marks) Bosco's IQ is 200 and he does no revision at all. Using the model in iv), find a 90% prediction interval for his GPA.

- 3. (10 marks). For the regression $Y = X\beta + e$, $e \sim N(0, \sigma^2)$, let $\hat{y}_i = X_i \hat{\beta}$ be the fitted value of the *i*-th observation, i = 1, ..., n. Let X be a $n \times p$ matrix.
 - (a) Find $E(\sum_{i=1}^{n} \hat{y}_{i}^{2})$ in terms of X, β, p and σ^{2} .
 - (b) Find $E(\sum_{i=1}^{n} (\hat{y}_i \bar{y})(y_i \hat{y}_i)).$

4. (10 marks). Consider the regression $Y = X\beta + e$, where X is $n \times (p+3)$ with the first column being constants 1. Express the F-statistics of the overall analysis of variance in terms of the coefficient of the determination. (Express A in terms of B means writing A = f(B) for some function f.)

5. (10 marks). In searching for the estimates of the regression coefficient β , we differentiate the RSS and solve for system of equations. Will there be more than one solutions? Will the solution be the maximizer of the RSS instead of minimizer?